Metamath Proof Explorer


Theorem cdlemk19xlem

Description: Lemma for cdlemk19x . (Contributed by NM, 30-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk19xlem K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F / g X P = N P

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp1l K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F K HL W H
13 simp2l1 K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F T
14 simp2l2 K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F I B
15 13 14 jca K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F T F I B
16 simp2l3 K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F N T
17 simp2r K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F P A ¬ P ˙ W
18 simp1r K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F R F = R N
19 simp3l K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F b T
20 simp3rl K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F b I B
21 simp3rr K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F R b R F
22 20 21 21 3jca K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F b I B R b R F R b R F
23 1 2 3 4 5 6 7 8 9 10 11 cdlemk42 K HL W H F T F I B F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R F F / g X P = F / g Y
24 12 15 15 16 17 18 19 22 23 syl332anc K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F / g X P = F / g Y
25 simp3 K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F b T b I B R b R F
26 1 2 3 4 5 6 7 8 9 10 cdlemk19y K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F F / g Y = N P
27 12 15 16 17 18 25 26 syl231anc K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F / g Y = N P
28 24 27 eqtrd K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F / g X P = N P