Metamath Proof Explorer


Theorem cdlemk42

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 20-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk42 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G / g X P = G / g Y

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp13l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G T
13 1 2 3 4 5 6 7 8 9 10 11 cdlemk36 K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R g X P = Y
14 13 sbcth G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R g X P = Y
15 sbcimg G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R g X P = Y [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R g [˙G / g]˙ X P = Y
16 14 15 mpbid G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R g [˙G / g]˙ X P = Y
17 eleq1 g = G g T G T
18 neeq1 g = G g I B G I B
19 17 18 anbi12d g = G g T g I B G T G I B
20 19 3anbi3d g = G K HL W H F T F I B g T g I B K HL W H F T F I B G T G I B
21 fveq2 g = G R g = R G
22 21 neeq2d g = G R b R g R b R G
23 22 3anbi3d g = G b I B R b R F R b R g b I B R b R F R b R G
24 23 anbi2d g = G b T b I B R b R F R b R g b T b I B R b R F R b R G
25 20 24 3anbi13d g = G K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R g K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G
26 25 sbcieg G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R g K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G
27 sbceqg G T [˙G / g]˙ X P = Y G / g X P = G / g Y
28 csbfv12 G / g X P = G / g X G / g P
29 csbconstg G T G / g P = P
30 29 fveq2d G T G / g X G / g P = G / g X P
31 28 30 syl5eq G T G / g X P = G / g X P
32 31 eqeq1d G T G / g X P = G / g Y G / g X P = G / g Y
33 27 32 bitrd G T [˙G / g]˙ X P = Y G / g X P = G / g Y
34 16 26 33 3imtr3d G T K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G / g X P = G / g Y
35 12 34 mpcom K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G / g X P = G / g Y