Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
11 |
|
cdlemk5.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
12 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> G e. T ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk36 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( g e. T /\ g =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) ) ) -> ( X ` P ) = Y ) |
14 |
13
|
sbcth |
|- ( G e. T -> [. G / g ]. ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( g e. T /\ g =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) ) ) -> ( X ` P ) = Y ) ) |
15 |
|
sbcimg |
|- ( G e. T -> ( [. G / g ]. ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( g e. T /\ g =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) ) ) -> ( X ` P ) = Y ) <-> ( [. G / g ]. ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( g e. T /\ g =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) ) ) -> [. G / g ]. ( X ` P ) = Y ) ) ) |
16 |
14 15
|
mpbid |
|- ( G e. T -> ( [. G / g ]. ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( g e. T /\ g =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) ) ) -> [. G / g ]. ( X ` P ) = Y ) ) |
17 |
|
eleq1 |
|- ( g = G -> ( g e. T <-> G e. T ) ) |
18 |
|
neeq1 |
|- ( g = G -> ( g =/= ( _I |` B ) <-> G =/= ( _I |` B ) ) ) |
19 |
17 18
|
anbi12d |
|- ( g = G -> ( ( g e. T /\ g =/= ( _I |` B ) ) <-> ( G e. T /\ G =/= ( _I |` B ) ) ) ) |
20 |
19
|
3anbi3d |
|- ( g = G -> ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( g e. T /\ g =/= ( _I |` B ) ) ) <-> ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) ) ) |
21 |
|
fveq2 |
|- ( g = G -> ( R ` g ) = ( R ` G ) ) |
22 |
21
|
neeq2d |
|- ( g = G -> ( ( R ` b ) =/= ( R ` g ) <-> ( R ` b ) =/= ( R ` G ) ) ) |
23 |
22
|
3anbi3d |
|- ( g = G -> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) <-> ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) |
24 |
23
|
anbi2d |
|- ( g = G -> ( ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) ) <-> ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) ) |
25 |
20 24
|
3anbi13d |
|- ( g = G -> ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( g e. T /\ g =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) ) ) <-> ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) ) ) |
26 |
25
|
sbcieg |
|- ( G e. T -> ( [. G / g ]. ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( g e. T /\ g =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) ) ) <-> ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) ) ) |
27 |
|
sbceqg |
|- ( G e. T -> ( [. G / g ]. ( X ` P ) = Y <-> [_ G / g ]_ ( X ` P ) = [_ G / g ]_ Y ) ) |
28 |
|
csbfv12 |
|- [_ G / g ]_ ( X ` P ) = ( [_ G / g ]_ X ` [_ G / g ]_ P ) |
29 |
|
csbconstg |
|- ( G e. T -> [_ G / g ]_ P = P ) |
30 |
29
|
fveq2d |
|- ( G e. T -> ( [_ G / g ]_ X ` [_ G / g ]_ P ) = ( [_ G / g ]_ X ` P ) ) |
31 |
28 30
|
syl5eq |
|- ( G e. T -> [_ G / g ]_ ( X ` P ) = ( [_ G / g ]_ X ` P ) ) |
32 |
31
|
eqeq1d |
|- ( G e. T -> ( [_ G / g ]_ ( X ` P ) = [_ G / g ]_ Y <-> ( [_ G / g ]_ X ` P ) = [_ G / g ]_ Y ) ) |
33 |
27 32
|
bitrd |
|- ( G e. T -> ( [. G / g ]. ( X ` P ) = Y <-> ( [_ G / g ]_ X ` P ) = [_ G / g ]_ Y ) ) |
34 |
16 26 33
|
3imtr3d |
|- ( G e. T -> ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( [_ G / g ]_ X ` P ) = [_ G / g ]_ Y ) ) |
35 |
12 34
|
mpcom |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( [_ G / g ]_ X ` P ) = [_ G / g ]_ Y ) |