Metamath Proof Explorer


Theorem cdlemk19x

Description: cdlemk19 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk19x K HL W H R F = R N F T F I B N T P A ¬ P ˙ W F / g X P = N P

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp1l K HL W H R F = R N F T F I B N T P A ¬ P ˙ W K HL W H
13 1 6 7 8 cdlemftr1 K HL W H b T b I B R b R F
14 12 13 syl K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F
15 nfv b K HL W H R F = R N F T F I B N T P A ¬ P ˙ W
16 nfcv _ b F
17 nfra1 b b T b I B R b R F R b R g z P = Y
18 nfcv _ b T
19 17 18 nfriota _ b ι z T | b T b I B R b R F R b R g z P = Y
20 11 19 nfcxfr _ b X
21 16 20 nfcsbw _ b F / g X
22 nfcv _ b P
23 21 22 nffv _ b F / g X P
24 23 nfeq1 b F / g X P = N P
25 simpl1 K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F K HL W H R F = R N
26 simpl2 K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F T F I B N T
27 simpl3 K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F P A ¬ P ˙ W
28 simpr K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F b T b I B R b R F
29 1 2 3 4 5 6 7 8 9 10 11 cdlemk19xlem K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F / g X P = N P
30 25 26 27 28 29 syl121anc K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F / g X P = N P
31 30 exp32 K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F / g X P = N P
32 15 24 31 rexlimd K HL W H R F = R N F T F I B N T P A ¬ P ˙ W b T b I B R b R F F / g X P = N P
33 14 32 mpd K HL W H R F = R N F T F I B N T P A ¬ P ˙ W F / g X P = N P