Metamath Proof Explorer


Theorem cdlemk19

Description: Part of proof of Lemma K of Crawley p. 118. Line 22 on p. 119. N , U , O , D are k, sigma_1 (p), k_1, f_1. (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B=BaseK
cdlemk1.l ˙=K
cdlemk1.j ˙=joinK
cdlemk1.m ˙=meetK
cdlemk1.a A=AtomsK
cdlemk1.h H=LHypK
cdlemk1.t T=LTrnKW
cdlemk1.r R=trLKW
cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk1.o O=SD
cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
Assertion cdlemk19 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFUF=N

Proof

Step Hyp Ref Expression
1 cdlemk1.b B=BaseK
2 cdlemk1.l ˙=K
3 cdlemk1.j ˙=joinK
4 cdlemk1.m ˙=meetK
5 cdlemk1.a A=AtomsK
6 cdlemk1.h H=LHypK
7 cdlemk1.t T=LTrnKW
8 cdlemk1.r R=trLKW
9 cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk1.o O=SD
11 cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
12 simp11 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFKHLWH
13 simp21 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNT
14 simp23 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFRF=RN
15 simp12 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFFT
16 simp13 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFDT
17 simp33 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFRDRF
18 17 17 jca KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFRDRFRDRF
19 simp31 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFFIB
20 simp32 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFDIB
21 19 19 20 3jca KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFFIBFIBDIB
22 simp22 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFPA¬P˙W
23 1 2 3 4 5 6 7 8 9 10 11 cdlemkuel KHLWHRF=RNFTFTDTNTRDRFRDRFFIBFIBDIBPA¬P˙WUFT
24 12 14 15 15 16 13 18 21 22 23 syl333anc KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFUFT
25 1 2 3 4 5 6 7 8 9 10 11 cdlemk18 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNP=UFP
26 2 5 6 7 cdlemd KHLWHNTUFTPA¬P˙WNP=UFPN=UF
27 12 13 24 22 25 26 syl311anc KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFN=UF
28 27 eqcomd KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFUF=N