Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|
2 |
|
cdlemk1.l |
|
3 |
|
cdlemk1.j |
|
4 |
|
cdlemk1.m |
|
5 |
|
cdlemk1.a |
|
6 |
|
cdlemk1.h |
|
7 |
|
cdlemk1.t |
|
8 |
|
cdlemk1.r |
|
9 |
|
cdlemk1.s |
|
10 |
|
cdlemk1.o |
|
11 |
|
cdlemk1.u |
|
12 |
|
cdlemk1.v |
|
13 |
|
simp31 |
|
14 |
|
simp33 |
|
15 |
13 14
|
jca |
|
16 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk6u |
|
17 |
15 16
|
syld3an3 |
|
18 |
|
simp11l |
|
19 |
|
simp11r |
|
20 |
18 19
|
jca |
|
21 |
|
simp23 |
|
22 |
|
simp212 |
|
23 |
|
simp12 |
|
24 |
|
simp13 |
|
25 |
|
simp211 |
|
26 |
23 24 25
|
3jca |
|
27 |
|
simp331 |
|
28 |
|
simp332 |
|
29 |
28
|
necomd |
|
30 |
27 29
|
jca |
|
31 |
|
simp311 |
|
32 |
|
simp313 |
|
33 |
|
simp312 |
|
34 |
31 32 33
|
3jca |
|
35 |
|
simp22 |
|
36 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuv2 |
|
37 |
20 21 22 26 30 34 35 36
|
syl313anc |
|
38 |
2 3 5 6 7 8
|
trljat1 |
|
39 |
20 22 35 38
|
syl3anc |
|
40 |
39
|
oveq1d |
|
41 |
37 40
|
eqtrd |
|
42 |
18
|
hllatd |
|
43 |
|
simp213 |
|
44 |
|
simp333 |
|
45 |
44
|
necomd |
|
46 |
27 45
|
jca |
|
47 |
|
simp32 |
|
48 |
31 47 33
|
3jca |
|
49 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuat |
|
50 |
20 21 43 26 46 48 35 49
|
syl313anc |
|
51 |
1 5
|
atbase |
|
52 |
50 51
|
syl |
|
53 |
|
simp22l |
|
54 |
1 2 3 5 6 7 8 4 12
|
cdlemkvcl |
|
55 |
18 19 24 22 43 53 54
|
syl231anc |
|
56 |
1 3
|
latjcom |
|
57 |
42 52 55 56
|
syl3anc |
|
58 |
12
|
a1i |
|
59 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuv2 |
|
60 |
20 21 43 26 46 48 35 59
|
syl313anc |
|
61 |
2 3 5 6 7 8
|
trljat1 |
|
62 |
20 43 35 61
|
syl3anc |
|
63 |
2 5 6 7
|
ltrnat |
|
64 |
20 43 53 63
|
syl3anc |
|
65 |
3 5
|
hlatjcom |
|
66 |
18 64 53 65
|
syl3anc |
|
67 |
62 66
|
eqtr4d |
|
68 |
|
simp1 |
|
69 |
25 35 21
|
3jca |
|
70 |
31 33 27
|
3jca |
|
71 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkoatnle |
|
72 |
71
|
simpld |
|
73 |
68 69 70 72
|
syl3anc |
|
74 |
43 24
|
jca |
|
75 |
5 6 7 8
|
trlcocnvat |
|
76 |
20 74 44 75
|
syl3anc |
|
77 |
3 5
|
hlatjcom |
|
78 |
18 73 76 77
|
syl3anc |
|
79 |
67 78
|
oveq12d |
|
80 |
60 79
|
eqtrd |
|
81 |
58 80
|
oveq12d |
|
82 |
57 81
|
eqtrd |
|
83 |
17 41 82
|
3brtr4d |
|