Metamath Proof Explorer


Theorem cdlemk7u

Description: Part of proof of Lemma K of Crawley p. 118. Line 5, p. 119 for the sigma_1 case. (Contributed by NM, 3-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
cdlemk1.u U = e T ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
cdlemk1.v V = G P ˙ X P ˙ R G D -1 ˙ R X D -1
Assertion cdlemk7u K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U G P ˙ U X P ˙ V

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 cdlemk1.u U = e T ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
12 cdlemk1.v V = G P ˙ X P ˙ R G D -1 ˙ R X D -1
13 simp31 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D F I B D I B G I B
14 simp33 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R D R F R G R D R X R D
15 13 14 jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D F I B D I B G I B R D R F R G R D R X R D
16 1 2 3 4 5 6 7 8 9 10 cdlemk6u K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ G P ˙ O P ˙ R G D -1 ˙ G P ˙ X P ˙ R G D -1 ˙ R X D -1 ˙ X P ˙ P ˙ R X D -1 ˙ O P
17 15 16 syld3an3 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D P ˙ G P ˙ O P ˙ R G D -1 ˙ G P ˙ X P ˙ R G D -1 ˙ R X D -1 ˙ X P ˙ P ˙ R X D -1 ˙ O P
18 simp11l K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D K HL
19 simp11r K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D W H
20 18 19 jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D K HL W H
21 simp23 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R F = R N
22 simp212 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D G T
23 simp12 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D F T
24 simp13 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D D T
25 simp211 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D N T
26 23 24 25 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D F T D T N T
27 simp331 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R D R F
28 simp332 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R G R D
29 28 necomd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R D R G
30 27 29 jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R D R F R D R G
31 simp311 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D F I B
32 simp313 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D G I B
33 simp312 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D D I B
34 31 32 33 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D F I B G I B D I B
35 simp22 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D P A ¬ P ˙ W
36 1 2 3 4 5 6 7 8 9 10 11 cdlemkuv2 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W U G P = P ˙ R G ˙ O P ˙ R G D -1
37 20 21 22 26 30 34 35 36 syl313anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U G P = P ˙ R G ˙ O P ˙ R G D -1
38 2 3 5 6 7 8 trljat1 K HL W H G T P A ¬ P ˙ W P ˙ R G = P ˙ G P
39 20 22 35 38 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D P ˙ R G = P ˙ G P
40 39 oveq1d K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D P ˙ R G ˙ O P ˙ R G D -1 = P ˙ G P ˙ O P ˙ R G D -1
41 37 40 eqtrd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U G P = P ˙ G P ˙ O P ˙ R G D -1
42 18 hllatd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D K Lat
43 simp213 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D X T
44 simp333 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R X R D
45 44 necomd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R D R X
46 27 45 jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R D R F R D R X
47 simp32 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D X I B
48 31 47 33 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D F I B X I B D I B
49 1 2 3 4 5 6 7 8 9 10 11 cdlemkuat K HL W H R F = R N X T F T D T N T R D R F R D R X F I B X I B D I B P A ¬ P ˙ W U X P A
50 20 21 43 26 46 48 35 49 syl313anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U X P A
51 1 5 atbase U X P A U X P B
52 50 51 syl K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U X P B
53 simp22l K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D P A
54 1 2 3 5 6 7 8 4 12 cdlemkvcl K HL W H D T G T X T P A V B
55 18 19 24 22 43 53 54 syl231anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D V B
56 1 3 latjcom K Lat U X P B V B U X P ˙ V = V ˙ U X P
57 42 52 55 56 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U X P ˙ V = V ˙ U X P
58 12 a1i K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D V = G P ˙ X P ˙ R G D -1 ˙ R X D -1
59 1 2 3 4 5 6 7 8 9 10 11 cdlemkuv2 K HL W H R F = R N X T F T D T N T R D R F R D R X F I B X I B D I B P A ¬ P ˙ W U X P = P ˙ R X ˙ O P ˙ R X D -1
60 20 21 43 26 46 48 35 59 syl313anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U X P = P ˙ R X ˙ O P ˙ R X D -1
61 2 3 5 6 7 8 trljat1 K HL W H X T P A ¬ P ˙ W P ˙ R X = P ˙ X P
62 20 43 35 61 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D P ˙ R X = P ˙ X P
63 2 5 6 7 ltrnat K HL W H X T P A X P A
64 20 43 53 63 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D X P A
65 3 5 hlatjcom K HL X P A P A X P ˙ P = P ˙ X P
66 18 64 53 65 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D X P ˙ P = P ˙ X P
67 62 66 eqtr4d K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D P ˙ R X = X P ˙ P
68 simp1 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D K HL W H F T D T
69 25 35 21 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D N T P A ¬ P ˙ W R F = R N
70 31 33 27 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D F I B D I B R D R F
71 1 2 3 4 5 6 7 8 9 10 cdlemkoatnle K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A ¬ O P ˙ W
72 71 simpld K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A
73 68 69 70 72 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D O P A
74 43 24 jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D X T D T
75 5 6 7 8 trlcocnvat K HL W H X T D T R X R D R X D -1 A
76 20 74 44 75 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D R X D -1 A
77 3 5 hlatjcom K HL O P A R X D -1 A O P ˙ R X D -1 = R X D -1 ˙ O P
78 18 73 76 77 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D O P ˙ R X D -1 = R X D -1 ˙ O P
79 67 78 oveq12d K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D P ˙ R X ˙ O P ˙ R X D -1 = X P ˙ P ˙ R X D -1 ˙ O P
80 60 79 eqtrd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U X P = X P ˙ P ˙ R X D -1 ˙ O P
81 58 80 oveq12d K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D V ˙ U X P = G P ˙ X P ˙ R G D -1 ˙ R X D -1 ˙ X P ˙ P ˙ R X D -1 ˙ O P
82 57 81 eqtrd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U X P ˙ V = G P ˙ X P ˙ R G D -1 ˙ R X D -1 ˙ X P ˙ P ˙ R X D -1 ˙ O P
83 17 41 82 3brtr4d K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U G P ˙ U X P ˙ V