Metamath Proof Explorer


Theorem cdlemk19y

Description: cdlemk19 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
Assertion cdlemk19y KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFF/gY=NP

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 eqid fTιiT|iP=P˙Rf˙NP˙RfF-1=fTιiT|iP=P˙Rf˙NP˙RfF-1
12 eqid eTιjT|jP=P˙Re˙fTιiT|iP=P˙Rf˙NP˙RfF-1bP˙Reb-1=eTιjT|jP=P˙Re˙fTιiT|iP=P˙Rf˙NP˙RfF-1bP˙Reb-1
13 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk19ylem KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFF/gY=NP