Metamath Proof Explorer


Theorem cdlemk19ylem

Description: Lemma for cdlemk19y . (Contributed by NM, 30-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5c.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk5a.u2 C = e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1
Assertion cdlemk19ylem K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F F / g Y = N P

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5c.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
12 cdlemk5a.u2 C = e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1
13 simp1l K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F K HL W H
14 simp1r K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F F T F I B
15 simp2 K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F N T P A ¬ P ˙ W R F = R N
16 simp3l K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F b T
17 simp3rl K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F b I B
18 simp3rr K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R F
19 17 18 18 3jca K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F b I B R b R F R b R F
20 1 2 3 4 5 6 7 8 9 10 11 12 cdlemkyuu K HL W H F T F I B F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R F F / g Y = C F P
21 13 14 14 15 16 19 20 syl312anc K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F F / g Y = C F P
22 simp1rl K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F F T
23 simp1rr K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F F I B
24 eqid S b = S b
25 1 2 3 4 5 6 7 8 11 24 12 cdlemk19 K HL W H F T b T N T P A ¬ P ˙ W R F = R N F I B b I B R b R F C F = N
26 13 22 16 15 23 17 18 25 syl313anc K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F C F = N
27 26 fveq1d K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F C F P = N P
28 21 27 eqtrd K HL W H F T F I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F F / g Y = N P