| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
| 7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
| 9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
| 10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
| 11 |
|
cdlemk5c.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
| 12 |
|
cdlemk5a.u2 |
|- C = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` b ) ` P ) .\/ ( R ` ( e o. `' b ) ) ) ) ) ) |
| 13 |
|
simp1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
simp1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> ( F e. T /\ F =/= ( _I |` B ) ) ) |
| 15 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) |
| 16 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> b e. T ) |
| 17 |
|
simp3rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> b =/= ( _I |` B ) ) |
| 18 |
|
simp3rr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> ( R ` b ) =/= ( R ` F ) ) |
| 19 |
17 18 18
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` F ) ) ) |
| 20 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemkyuu |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> [_ F / g ]_ Y = ( ( C ` F ) ` P ) ) |
| 21 |
13 14 14 15 16 19 20
|
syl312anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> [_ F / g ]_ Y = ( ( C ` F ) ` P ) ) |
| 22 |
|
simp1rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> F e. T ) |
| 23 |
|
simp1rr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> F =/= ( _I |` B ) ) |
| 24 |
|
eqid |
|- ( S ` b ) = ( S ` b ) |
| 25 |
1 2 3 4 5 6 7 8 11 24 12
|
cdlemk19 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ b e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) -> ( C ` F ) = N ) |
| 26 |
13 22 16 15 23 17 18 25
|
syl313anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> ( C ` F ) = N ) |
| 27 |
26
|
fveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> ( ( C ` F ) ` P ) = ( N ` P ) ) |
| 28 |
21 27
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) ) -> [_ F / g ]_ Y = ( N ` P ) ) |