Metamath Proof Explorer


Theorem cdlemk43N

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 31-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
cdlemk5.u U = g T if F = N g X
Assertion cdlemk43N K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G U G P = G / g Y

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 cdlemk5.u U = g T if F = N g X
13 simp213 K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G F N
14 simp22l K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G G T
15 11 12 cdlemk40f F N G T U G = G / g X
16 13 14 15 syl2anc K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G U G = G / g X
17 16 fveq1d K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G U G P = G / g X P
18 simp1l K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G K HL W H
19 simp211 K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G F T
20 simp212 K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G N T
21 simp1r K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G R F = R N
22 1 6 7 8 trlnid K HL W H F T N T F N R F = R N F I B
23 18 19 20 13 21 22 syl122anc K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G F I B
24 19 23 jca K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G F T F I B
25 simp22 K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G G T G I B
26 simp23 K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G P A ¬ P ˙ W
27 simp3 K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G b T b I B R b R F R b R G
28 1 2 3 4 5 6 7 8 9 10 11 cdlemk42 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G / g X P = G / g Y
29 18 24 25 20 26 21 27 28 syl331anc K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G G / g X P = G / g Y
30 17 29 eqtrd K HL W H R F = R N F T N T F N G T G I B P A ¬ P ˙ W b T b I B R b R F R b R G U G P = G / g Y