Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5.x |
|
12 |
|
simp11l |
|
13 |
|
simp11r |
|
14 |
12 13
|
jca |
|
15 |
|
simp12 |
|
16 |
|
simp13l |
|
17 |
|
simp31 |
|
18 |
6 7
|
ltrnco |
|
19 |
12 13 16 17 18
|
syl211anc |
|
20 |
|
simp33 |
|
21 |
1 6 7 8
|
trlconid |
|
22 |
14 16 17 20 21
|
syl121anc |
|
23 |
19 22
|
jca |
|
24 |
|
simp21 |
|
25 |
|
simp22 |
|
26 |
|
simp23 |
|
27 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
|
28 |
14 15 23 24 25 26 27
|
syl132anc |
|
29 |
|
simp13 |
|
30 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
|
31 |
14 15 29 24 25 26 30
|
syl132anc |
|
32 |
|
simp32 |
|
33 |
17 32
|
jca |
|
34 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
|
35 |
14 15 33 24 25 26 34
|
syl132anc |
|
36 |
6 7
|
ltrnco |
|
37 |
12 13 31 35 36
|
syl211anc |
|
38 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk52 |
|
39 |
38
|
eqcomd |
|
40 |
2 5 6 7
|
cdlemd |
|
41 |
14 28 37 25 39 40
|
syl311anc |
|