Metamath Proof Explorer


Theorem cdlemk53a

Description: Lemma for cdlemk53 . (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk53a K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G I / g X = G / g X I / g X

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp11l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I K HL
13 simp11r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I W H
14 12 13 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I K HL W H
15 simp12 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I F T F I B
16 simp13l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G T
17 simp31 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I I T
18 6 7 ltrnco K HL W H G T I T G I T
19 12 13 16 17 18 syl211anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G I T
20 simp33 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I R G R I
21 1 6 7 8 trlconid K HL W H G T I T R G R I G I I B
22 14 16 17 20 21 syl121anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G I I B
23 19 22 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G I T G I I B
24 simp21 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I N T
25 simp22 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I P A ¬ P ˙ W
26 simp23 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I R F = R N
27 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s K HL W H F T F I B G I T G I I B N T P A ¬ P ˙ W R F = R N G I / g X T
28 14 15 23 24 25 26 27 syl132anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G I / g X T
29 simp13 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G T G I B
30 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G / g X T
31 14 15 29 24 25 26 30 syl132anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G / g X T
32 simp32 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I I I B
33 17 32 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I I T I I B
34 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s K HL W H F T F I B I T I I B N T P A ¬ P ˙ W R F = R N I / g X T
35 14 15 33 24 25 26 34 syl132anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I I / g X T
36 6 7 ltrnco K HL W H G / g X T I / g X T G / g X I / g X T
37 12 13 31 35 36 syl211anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G / g X I / g X T
38 1 2 3 4 5 6 7 8 9 10 11 cdlemk52 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G / g X I / g X P = G I / g X P
39 38 eqcomd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G I / g X P = G / g X I / g X P
40 2 5 6 7 cdlemd K HL W H G I / g X T G / g X I / g X T P A ¬ P ˙ W G I / g X P = G / g X I / g X P G I / g X = G / g X I / g X
41 14 28 37 25 39 40 syl311anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B R G R I G I / g X = G / g X I / g X