Metamath Proof Explorer


Theorem cdlemk35s

Description: Substitution version of cdlemk35 . (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk35s K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G / g X T

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp22l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G T
13 1 2 3 4 5 6 7 8 9 10 11 cdlemk35 K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N X T
14 13 sbcth G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N X T
15 sbcimg G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N X T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N [˙G / g]˙ X T
16 14 15 mpbid G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N [˙G / g]˙ X T
17 eleq1 g = G g T G T
18 neeq1 g = G g I B G I B
19 17 18 anbi12d g = G g T g I B G T G I B
20 19 3anbi2d g = G F T F I B g T g I B N T F T F I B G T G I B N T
21 20 3anbi2d g = G K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N
22 21 sbcieg G T [˙G / g]˙ K HL W H F T F I B g T g I B N T P A ¬ P ˙ W R F = R N K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N
23 sbcel1g G T [˙G / g]˙ X T G / g X T
24 16 22 23 3imtr3d G T K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G / g X T
25 12 24 mpcom K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G / g X T