Metamath Proof Explorer


Theorem cdlemk35s

Description: Substitution version of cdlemk35 . (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk35s KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNG/gXT

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp22l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNGT
13 1 2 3 4 5 6 7 8 9 10 11 cdlemk35 KHLWHFTFIBgTgIBNTPA¬P˙WRF=RNXT
14 13 sbcth GT[˙G/g]˙KHLWHFTFIBgTgIBNTPA¬P˙WRF=RNXT
15 sbcimg GT[˙G/g]˙KHLWHFTFIBgTgIBNTPA¬P˙WRF=RNXT[˙G/g]˙KHLWHFTFIBgTgIBNTPA¬P˙WRF=RN[˙G/g]˙XT
16 14 15 mpbid GT[˙G/g]˙KHLWHFTFIBgTgIBNTPA¬P˙WRF=RN[˙G/g]˙XT
17 eleq1 g=GgTGT
18 neeq1 g=GgIBGIB
19 17 18 anbi12d g=GgTgIBGTGIB
20 19 3anbi2d g=GFTFIBgTgIBNTFTFIBGTGIBNT
21 20 3anbi2d g=GKHLWHFTFIBgTgIBNTPA¬P˙WRF=RNKHLWHFTFIBGTGIBNTPA¬P˙WRF=RN
22 21 sbcieg GT[˙G/g]˙KHLWHFTFIBgTgIBNTPA¬P˙WRF=RNKHLWHFTFIBGTGIBNTPA¬P˙WRF=RN
23 sbcel1g GT[˙G/g]˙XTG/gXT
24 16 22 23 3imtr3d GTKHLWHFTFIBGTGIBNTPA¬P˙WRF=RNG/gXT
25 12 24 mpcom KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNG/gXT