Metamath Proof Explorer


Theorem cdlemk7u-2N

Description: Part of proof of Lemma K of Crawley p. 118. Line 5, p. 119 for the sigma_2 case. (Contributed by NM, 5-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk2.b B=BaseK
cdlemk2.l ˙=K
cdlemk2.j ˙=joinK
cdlemk2.m ˙=meetK
cdlemk2.a A=AtomsK
cdlemk2.h H=LHypK
cdlemk2.t T=LTrnKW
cdlemk2.r R=trLKW
cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk2.q Q=SC
cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
cdlemk2.z Z=GP˙XP˙RGC-1˙RXC-1
Assertion cdlemk7u-2N KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WVGP˙VXP˙Z

Proof

Step Hyp Ref Expression
1 cdlemk2.b B=BaseK
2 cdlemk2.l ˙=K
3 cdlemk2.j ˙=joinK
4 cdlemk2.m ˙=meetK
5 cdlemk2.a A=AtomsK
6 cdlemk2.h H=LHypK
7 cdlemk2.t T=LTrnKW
8 cdlemk2.r R=trLKW
9 cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk2.q Q=SC
11 cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
12 cdlemk2.z Z=GP˙XP˙RGC-1˙RXC-1
13 simp11 KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WKHL
14 simp12 KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WWH
15 13 14 jca KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WKHLWH
16 simp211 KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WFT
17 simp212 KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WCT
18 simp213 KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WNT
19 simp22l KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WGT
20 simp23l KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WXT
21 18 19 20 3jca KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WNTGTXT
22 simp33 KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WPA¬P˙W
23 simp13 KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WRF=RN
24 simp32l KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WFIB
25 simp32r KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WCIB
26 simp22r KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WGIB
27 24 25 26 3jca KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WFIBCIBGIB
28 simp23r KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WXIB
29 simp31 KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WRCRFRGRCRXRC
30 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk7u KHLWHFTCTNTGTXTPA¬P˙WRF=RNFIBCIBGIBXIBRCRFRGRCRXRCVGP˙VXP˙Z
31 15 16 17 21 22 23 27 28 29 30 syl333anc KHLWHRF=RNFTCTNTGTGIBXTXIBRCRFRGRCRXRCFIBCIBPA¬P˙WVGP˙VXP˙Z