Metamath Proof Explorer


Theorem cdlemksat

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 27-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
Assertion cdlemksat K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G P A

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 simp11 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F K HL W H
11 1 2 3 4 5 6 7 8 9 cdlemksel K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G T
12 simp22l K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P A
13 2 4 5 6 ltrnat K HL W H S G T P A S G P A
14 10 11 12 13 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G P A