Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdlemksat
Next ⟩
cdlemksv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdlemksat
Description:
Part of proof of Lemma K of
Crawley
p. 118.
(Contributed by
NM
, 27-Jun-2013)
Ref
Expression
Hypotheses
cdlemk.b
⊢
B
=
Base
K
cdlemk.l
⊢
≤
˙
=
≤
K
cdlemk.j
⊢
∨
˙
=
join
⁡
K
cdlemk.a
⊢
A
=
Atoms
⁡
K
cdlemk.h
⊢
H
=
LHyp
⁡
K
cdlemk.t
⊢
T
=
LTrn
⁡
K
⁡
W
cdlemk.r
⊢
R
=
trL
⁡
K
⁡
W
cdlemk.m
⊢
∧
˙
=
meet
⁡
K
cdlemk.s
⊢
S
=
f
∈
T
⟼
ι
i
∈
T
|
i
⁡
P
=
P
∨
˙
R
⁡
f
∧
˙
N
⁡
P
∨
˙
R
⁡
f
∘
F
-1
Assertion
cdlemksat
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
N
∈
T
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
R
⁡
F
=
R
⁡
N
∧
F
≠
I
↾
B
∧
G
≠
I
↾
B
∧
R
⁡
G
≠
R
⁡
F
→
S
⁡
G
⁡
P
∈
A
Proof
Step
Hyp
Ref
Expression
1
cdlemk.b
⊢
B
=
Base
K
2
cdlemk.l
⊢
≤
˙
=
≤
K
3
cdlemk.j
⊢
∨
˙
=
join
⁡
K
4
cdlemk.a
⊢
A
=
Atoms
⁡
K
5
cdlemk.h
⊢
H
=
LHyp
⁡
K
6
cdlemk.t
⊢
T
=
LTrn
⁡
K
⁡
W
7
cdlemk.r
⊢
R
=
trL
⁡
K
⁡
W
8
cdlemk.m
⊢
∧
˙
=
meet
⁡
K
9
cdlemk.s
⊢
S
=
f
∈
T
⟼
ι
i
∈
T
|
i
⁡
P
=
P
∨
˙
R
⁡
f
∧
˙
N
⁡
P
∨
˙
R
⁡
f
∘
F
-1
10
simp11
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
N
∈
T
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
R
⁡
F
=
R
⁡
N
∧
F
≠
I
↾
B
∧
G
≠
I
↾
B
∧
R
⁡
G
≠
R
⁡
F
→
K
∈
HL
∧
W
∈
H
11
1
2
3
4
5
6
7
8
9
cdlemksel
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
N
∈
T
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
R
⁡
F
=
R
⁡
N
∧
F
≠
I
↾
B
∧
G
≠
I
↾
B
∧
R
⁡
G
≠
R
⁡
F
→
S
⁡
G
∈
T
12
simp22l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
N
∈
T
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
R
⁡
F
=
R
⁡
N
∧
F
≠
I
↾
B
∧
G
≠
I
↾
B
∧
R
⁡
G
≠
R
⁡
F
→
P
∈
A
13
2
4
5
6
ltrnat
⊢
K
∈
HL
∧
W
∈
H
∧
S
⁡
G
∈
T
∧
P
∈
A
→
S
⁡
G
⁡
P
∈
A
14
10
11
12
13
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
N
∈
T
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
R
⁡
F
=
R
⁡
N
∧
F
≠
I
↾
B
∧
G
≠
I
↾
B
∧
R
⁡
G
≠
R
⁡
F
→
S
⁡
G
⁡
P
∈
A