Metamath Proof Explorer


Theorem cdlemksat

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 27-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B=BaseK
cdlemk.l ˙=K
cdlemk.j ˙=joinK
cdlemk.a A=AtomsK
cdlemk.h H=LHypK
cdlemk.t T=LTrnKW
cdlemk.r R=trLKW
cdlemk.m ˙=meetK
cdlemk.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
Assertion cdlemksat KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSGPA

Proof

Step Hyp Ref Expression
1 cdlemk.b B=BaseK
2 cdlemk.l ˙=K
3 cdlemk.j ˙=joinK
4 cdlemk.a A=AtomsK
5 cdlemk.h H=LHypK
6 cdlemk.t T=LTrnKW
7 cdlemk.r R=trLKW
8 cdlemk.m ˙=meetK
9 cdlemk.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 simp11 KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFKHLWH
11 1 2 3 4 5 6 7 8 9 cdlemksel KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSGT
12 simp22l KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFPA
13 2 4 5 6 ltrnat KHLWHSGTPASGPA
14 10 11 12 13 syl3anc KHLWHFTGTNTPA¬P˙WRF=RNFIBGIBRGRFSGPA