Metamath Proof Explorer


Theorem cdleml2N

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleml1.b B=BaseK
cdleml1.h H=LHypK
cdleml1.t T=LTrnKW
cdleml1.r R=trLKW
cdleml1.e E=TEndoKW
Assertion cdleml2N KHLWHUEVEfTfIBUfIBVfIBsEsUf=Vf

Proof

Step Hyp Ref Expression
1 cdleml1.b B=BaseK
2 cdleml1.h H=LHypK
3 cdleml1.t T=LTrnKW
4 cdleml1.r R=trLKW
5 cdleml1.e E=TEndoKW
6 simp1 KHLWHUEVEfTfIBUfIBVfIBKHLWH
7 simp21 KHLWHUEVEfTfIBUfIBVfIBUE
8 simp23 KHLWHUEVEfTfIBUfIBVfIBfT
9 2 3 5 tendocl KHLWHUEfTUfT
10 6 7 8 9 syl3anc KHLWHUEVEfTfIBUfIBVfIBUfT
11 simp22 KHLWHUEVEfTfIBUfIBVfIBVE
12 2 3 5 tendocl KHLWHVEfTVfT
13 6 11 8 12 syl3anc KHLWHUEVEfTfIBUfIBVfIBVfT
14 1 2 3 4 5 cdleml1N KHLWHUEVEfTfIBUfIBVfIBRUf=RVf
15 2 3 4 5 cdlemk KHLWHUfTVfTRUf=RVfsEsUf=Vf
16 6 10 13 14 15 syl121anc KHLWHUEVEfTfIBUfIBVfIBsEsUf=Vf