Metamath Proof Explorer


Theorem cdleml2N

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleml1.b B = Base K
cdleml1.h H = LHyp K
cdleml1.t T = LTrn K W
cdleml1.r R = trL K W
cdleml1.e E = TEndo K W
Assertion cdleml2N K HL W H U E V E f T f I B U f I B V f I B s E s U f = V f

Proof

Step Hyp Ref Expression
1 cdleml1.b B = Base K
2 cdleml1.h H = LHyp K
3 cdleml1.t T = LTrn K W
4 cdleml1.r R = trL K W
5 cdleml1.e E = TEndo K W
6 simp1 K HL W H U E V E f T f I B U f I B V f I B K HL W H
7 simp21 K HL W H U E V E f T f I B U f I B V f I B U E
8 simp23 K HL W H U E V E f T f I B U f I B V f I B f T
9 2 3 5 tendocl K HL W H U E f T U f T
10 6 7 8 9 syl3anc K HL W H U E V E f T f I B U f I B V f I B U f T
11 simp22 K HL W H U E V E f T f I B U f I B V f I B V E
12 2 3 5 tendocl K HL W H V E f T V f T
13 6 11 8 12 syl3anc K HL W H U E V E f T f I B U f I B V f I B V f T
14 1 2 3 4 5 cdleml1N K HL W H U E V E f T f I B U f I B V f I B R U f = R V f
15 2 3 4 5 cdlemk K HL W H U f T V f T R U f = R V f s E s U f = V f
16 6 10 13 14 15 syl121anc K HL W H U E V E f T f I B U f I B V f I B s E s U f = V f