Metamath Proof Explorer


Theorem cfilss

Description: A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cfilss D∞MetXFCauFilDGFilXFGGCauFilD

Proof

Step Hyp Ref Expression
1 simprl D∞MetXFCauFilDGFilXFGGFilX
2 simprr D∞MetXFCauFilDGFilXFGFG
3 iscfil D∞MetXFCauFilDFFilXx+yFDy×y0x
4 3 simplbda D∞MetXFCauFilDx+yFDy×y0x
5 4 adantr D∞MetXFCauFilDGFilXFGx+yFDy×y0x
6 ssrexv FGyFDy×y0xyGDy×y0x
7 6 ralimdv FGx+yFDy×y0xx+yGDy×y0x
8 2 5 7 sylc D∞MetXFCauFilDGFilXFGx+yGDy×y0x
9 iscfil D∞MetXGCauFilDGFilXx+yGDy×y0x
10 9 ad2antrr D∞MetXFCauFilDGFilXFGGCauFilDGFilXx+yGDy×y0x
11 1 8 10 mpbir2and D∞MetXFCauFilDGFilXFGGCauFilD