Metamath Proof Explorer


Theorem iscfil

Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion iscfil D∞MetXFCauFilDFFilXx+yFDy×y0x

Proof

Step Hyp Ref Expression
1 cfilfval D∞MetXCauFilD=fFilX|x+yfDy×y0x
2 1 eleq2d D∞MetXFCauFilDFfFilX|x+yfDy×y0x
3 rexeq f=FyfDy×y0xyFDy×y0x
4 3 ralbidv f=Fx+yfDy×y0xx+yFDy×y0x
5 4 elrab FfFilX|x+yfDy×y0xFFilXx+yFDy×y0x
6 2 5 bitrdi D∞MetXFCauFilDFFilXx+yFDy×y0x