Metamath Proof Explorer


Theorem cfilufbas

Description: A Cauchy filter base is a filter base. (Contributed by Thierry Arnoux, 19-Nov-2017)

Ref Expression
Assertion cfilufbas UUnifOnXFCauFilUUFfBasX

Proof

Step Hyp Ref Expression
1 iscfilu UUnifOnXFCauFilUUFfBasXvUaFa×av
2 1 simprbda UUnifOnXFCauFilUUFfBasX