Metamath Proof Explorer


Theorem cfiluexsm

Description: For a Cauchy filter base and any entourage V , there is an element of the filter small in V . (Contributed by Thierry Arnoux, 19-Nov-2017)

Ref Expression
Assertion cfiluexsm UUnifOnXFCauFilUUVUaFa×aV

Proof

Step Hyp Ref Expression
1 iscfilu UUnifOnXFCauFilUUFfBasXvUaFa×av
2 1 simplbda UUnifOnXFCauFilUUvUaFa×av
3 2 3adant3 UUnifOnXFCauFilUUVUvUaFa×av
4 sseq2 v=Va×ava×aV
5 4 rexbidv v=VaFa×avaFa×aV
6 5 rspcv VUvUaFa×avaFa×aV
7 6 3ad2ant3 UUnifOnXFCauFilUUVUvUaFa×avaFa×aV
8 3 7 mpd UUnifOnXFCauFilUUVUaFa×aV