Metamath Proof Explorer
Description: Deduction form of cgrcomlr . (Contributed by Scott Fenton, 14-Oct-2013)
|
|
Ref |
Expression |
|
Hypotheses |
cgrcomlrand.1 |
|
|
|
cgrcomlrand.2 |
|
|
|
cgrcomlrand.3 |
|
|
|
cgrcomlrand.4 |
|
|
|
cgrcomlrand.5 |
|
|
|
cgrcomlrand.6 |
|
|
Assertion |
cgrcomlrand |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cgrcomlrand.1 |
|
2 |
|
cgrcomlrand.2 |
|
3 |
|
cgrcomlrand.3 |
|
4 |
|
cgrcomlrand.4 |
|
5 |
|
cgrcomlrand.5 |
|
6 |
|
cgrcomlrand.6 |
|
7 |
1 2 3 4 5 6
|
cgrcomrand |
|
8 |
1 2 3 5 4 7
|
cgrcomland |
|