Metamath Proof Explorer
Description: Deduction form of axcgrtr . (Contributed by Scott Fenton, 13-Oct-2013)
|
|
Ref |
Expression |
|
Hypotheses |
cgrtr4d.1 |
|
|
|
cgrtr4d.2 |
|
|
|
cgrtr4d.3 |
|
|
|
cgrtr4d.4 |
|
|
|
cgrtr4d.5 |
|
|
|
cgrtr4d.6 |
|
|
|
cgrtr4d.7 |
|
|
|
cgrtr4d.8 |
|
|
|
cgrtr4d.9 |
|
|
Assertion |
cgrtr4d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cgrtr4d.1 |
|
2 |
|
cgrtr4d.2 |
|
3 |
|
cgrtr4d.3 |
|
4 |
|
cgrtr4d.4 |
|
5 |
|
cgrtr4d.5 |
|
6 |
|
cgrtr4d.6 |
|
7 |
|
cgrtr4d.7 |
|
8 |
|
cgrtr4d.8 |
|
9 |
|
cgrtr4d.9 |
|
10 |
|
axcgrtr |
|
11 |
1 2 3 4 5 6 7 10
|
syl133anc |
|
12 |
8 9 11
|
mp2and |
|