Metamath Proof Explorer


Theorem cgrtr4d

Description: Deduction form of axcgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr4d.1 φ N
cgrtr4d.2 φ A 𝔼 N
cgrtr4d.3 φ B 𝔼 N
cgrtr4d.4 φ C 𝔼 N
cgrtr4d.5 φ D 𝔼 N
cgrtr4d.6 φ E 𝔼 N
cgrtr4d.7 φ F 𝔼 N
cgrtr4d.8 φ A B Cgr C D
cgrtr4d.9 φ A B Cgr E F
Assertion cgrtr4d φ C D Cgr E F

Proof

Step Hyp Ref Expression
1 cgrtr4d.1 φ N
2 cgrtr4d.2 φ A 𝔼 N
3 cgrtr4d.3 φ B 𝔼 N
4 cgrtr4d.4 φ C 𝔼 N
5 cgrtr4d.5 φ D 𝔼 N
6 cgrtr4d.6 φ E 𝔼 N
7 cgrtr4d.7 φ F 𝔼 N
8 cgrtr4d.8 φ A B Cgr C D
9 cgrtr4d.9 φ A B Cgr E F
10 axcgrtr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr C D A B Cgr E F C D Cgr E F
11 1 2 3 4 5 6 7 10 syl133anc φ A B Cgr C D A B Cgr E F C D Cgr E F
12 8 9 11 mp2and φ C D Cgr E F