Metamath Proof Explorer


Theorem cgrtr4d

Description: Deduction form of axcgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr4d.1 φN
cgrtr4d.2 φA𝔼N
cgrtr4d.3 φB𝔼N
cgrtr4d.4 φC𝔼N
cgrtr4d.5 φD𝔼N
cgrtr4d.6 φE𝔼N
cgrtr4d.7 φF𝔼N
cgrtr4d.8 φABCgrCD
cgrtr4d.9 φABCgrEF
Assertion cgrtr4d φCDCgrEF

Proof

Step Hyp Ref Expression
1 cgrtr4d.1 φN
2 cgrtr4d.2 φA𝔼N
3 cgrtr4d.3 φB𝔼N
4 cgrtr4d.4 φC𝔼N
5 cgrtr4d.5 φD𝔼N
6 cgrtr4d.6 φE𝔼N
7 cgrtr4d.7 φF𝔼N
8 cgrtr4d.8 φABCgrCD
9 cgrtr4d.9 φABCgrEF
10 axcgrtr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrCDABCgrEFCDCgrEF
11 1 2 3 4 5 6 7 10 syl133anc φABCgrCDABCgrEFCDCgrEF
12 8 9 11 mp2and φCDCgrEF