Metamath Proof Explorer


Theorem cgsex4gOLDOLD

Description: Obsolete version of cgsex4g as of 28-Jun-2024. (Contributed by NM, 5-Aug-1995) Avoid ax-10 . (Revised by Gino Giotto, 20-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cgsex4gOLDOLD.1 x=Ay=Bz=Cw=Dχ
cgsex4gOLDOLD.2 χφψ
Assertion cgsex4gOLDOLD ARBSCRDSxyzwχφψ

Proof

Step Hyp Ref Expression
1 cgsex4gOLDOLD.1 x=Ay=Bz=Cw=Dχ
2 cgsex4gOLDOLD.2 χφψ
3 2 biimpa χφψ
4 3 exlimivv zwχφψ
5 4 exlimivv xyzwχφψ
6 elisset ARxx=A
7 elisset BSyy=B
8 6 7 anim12i ARBSxx=Ayy=B
9 exdistrv xyx=Ay=Bxx=Ayy=B
10 8 9 sylibr ARBSxyx=Ay=B
11 elisset CRzz=C
12 elisset DSww=D
13 11 12 anim12i CRDSzz=Cww=D
14 exdistrv zwz=Cw=Dzz=Cww=D
15 13 14 sylibr CRDSzwz=Cw=D
16 10 15 anim12i ARBSCRDSxyx=Ay=Bzwz=Cw=D
17 excom yzwx=Ay=Bz=Cw=Dzywx=Ay=Bz=Cw=D
18 17 exbii xyzwx=Ay=Bz=Cw=Dxzywx=Ay=Bz=Cw=D
19 4exdistrv xzywx=Ay=Bz=Cw=Dxyx=Ay=Bzwz=Cw=D
20 18 19 bitri xyzwx=Ay=Bz=Cw=Dxyx=Ay=Bzwz=Cw=D
21 16 20 sylibr ARBSCRDSxyzwx=Ay=Bz=Cw=D
22 1 2eximi zwx=Ay=Bz=Cw=Dzwχ
23 22 2eximi xyzwx=Ay=Bz=Cw=Dxyzwχ
24 21 23 syl ARBSCRDSxyzwχ
25 2 biimprcd ψχφ
26 25 ancld ψχχφ
27 26 2eximdv ψzwχzwχφ
28 27 2eximdv ψxyzwχxyzwχφ
29 24 28 syl5com ARBSCRDSψxyzwχφ
30 5 29 impbid2 ARBSCRDSxyzwχφψ