Metamath Proof Explorer


Theorem chdmm1

Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chdmm1 ACBCAB=AB

Proof

Step Hyp Ref Expression
1 ineq1 A=ifACAAB=ifACAB
2 1 fveq2d A=ifACAAB=ifACAB
3 fveq2 A=ifACAA=ifACA
4 3 oveq1d A=ifACAAB=ifACAB
5 2 4 eqeq12d A=ifACAAB=ABifACAB=ifACAB
6 ineq2 B=ifBCBifACAB=ifACAifBCB
7 6 fveq2d B=ifBCBifACAB=ifACAifBCB
8 fveq2 B=ifBCBB=ifBCB
9 8 oveq2d B=ifBCBifACAB=ifACAifBCB
10 7 9 eqeq12d B=ifBCBifACAB=ifACABifACAifBCB=ifACAifBCB
11 ifchhv ifACAC
12 ifchhv ifBCBC
13 11 12 chdmm1i ifACAifBCB=ifACAifBCB
14 5 10 13 dedth2h ACBCAB=AB