Metamath Proof Explorer


Theorem chj12

Description: A rearrangement of Hilbert lattice join. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chj12 ACBCCCABC=BAC

Proof

Step Hyp Ref Expression
1 chjcom ACBCAB=BA
2 1 3adant3 ACBCCCAB=BA
3 2 oveq1d ACBCCCABC=BAC
4 chjass ACBCCCABC=ABC
5 chjass BCACCCBAC=BAC
6 5 3com12 ACBCCCBAC=BAC
7 3 4 6 3eqtr3d ACBCCCABC=BAC