Metamath Proof Explorer


Theorem chjassi

Description: Associative law for Hilbert lattice join. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
chjass.3 CC
Assertion chjassi ABC=ABC

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 chjass.3 CC
4 inass ABC=ABC
5 1 2 chdmj1i AB=AB
6 5 ineq1i ABC=ABC
7 2 3 chdmj1i BC=BC
8 7 ineq2i ABC=ABC
9 4 6 8 3eqtr4i ABC=ABC
10 9 fveq2i ABC=ABC
11 1 2 chjcli ABC
12 11 3 chdmm4i ABC=ABC
13 2 3 chjcli BCC
14 1 13 chdmm4i ABC=ABC
15 10 12 14 3eqtr3i ABC=ABC