Metamath Proof Explorer


Theorem chlejb1

Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chlejb1 ACBCABAB=B

Proof

Step Hyp Ref Expression
1 sseq1 A=ifACA0ABifACA0B
2 oveq1 A=ifACA0AB=ifACA0B
3 2 eqeq1d A=ifACA0AB=BifACA0B=B
4 1 3 bibi12d A=ifACA0ABAB=BifACA0BifACA0B=B
5 sseq2 B=ifBCB0ifACA0BifACA0ifBCB0
6 oveq2 B=ifBCB0ifACA0B=ifACA0ifBCB0
7 id B=ifBCB0B=ifBCB0
8 6 7 eqeq12d B=ifBCB0ifACA0B=BifACA0ifBCB0=ifBCB0
9 5 8 bibi12d B=ifBCB0ifACA0BifACA0B=BifACA0ifBCB0ifACA0ifBCB0=ifBCB0
10 h0elch 0C
11 10 elimel ifACA0C
12 10 elimel ifBCB0C
13 11 12 chlejb1i ifACA0ifBCB0ifACA0ifBCB0=ifBCB0
14 4 9 13 dedth2h ACBCABAB=B