Metamath Proof Explorer


Theorem chlejb1i

Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
Assertion chlejb1i ABAB=B

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 ssid BB
4 1 2 2 chlubii ABBBABB
5 3 4 mpan2 ABABB
6 2 1 chub2i BAB
7 5 6 jctir ABABBBAB
8 eqss AB=BABBBAB
9 7 8 sylibr ABAB=B
10 1 2 chub1i AAB
11 eqimss AB=BABB
12 10 11 sstrid AB=BAB
13 9 12 impbii ABAB=B