Metamath Proof Explorer


Theorem chndss

Description: Chains with an alphabet are also chains with any superset alphabet. (Contributed by Ender Ting, 20-Jan-2026)

Ref Expression
Assertion chndss A B Chain A < ˙ Chain B < ˙

Proof

Step Hyp Ref Expression
1 sswrd A B Word A Word B
2 1 sseld A B x Word A x Word B
3 2 anim1d A B x Word A c dom x 0 x c 1 < ˙ x c x Word B c dom x 0 x c 1 < ˙ x c
4 ischn x Chain A < ˙ x Word A c dom x 0 x c 1 < ˙ x c
5 ischn x Chain B < ˙ x Word B c dom x 0 x c 1 < ˙ x c
6 3 4 5 3imtr4g A B x Chain A < ˙ x Chain B < ˙
7 6 ssrdv A B Chain A < ˙ Chain B < ˙