Metamath Proof Explorer


Theorem chnsuslle

Description: Length of a subsequence is bounded by the length of original chain. (Contributed by Ender Ting, 30-Jan-2026)

Ref Expression
Hypotheses chnsubseq.1 φ W Chain A < ˙
chnsubseq.2 φ I Chain 0 ..^ W <
chnsubseq.3 φ < ˙ Po A
Assertion chnsuslle φ W I W

Proof

Step Hyp Ref Expression
1 chnsubseq.1 φ W Chain A < ˙
2 chnsubseq.2 φ I Chain 0 ..^ W <
3 chnsubseq.3 φ < ˙ Po A
4 ltso < Or
5 sopo < Or < Po
6 4 5 mp1i φ < Po
7 fzossz 0 ..^ W
8 zssre
9 7 8 sstri 0 ..^ W
10 9 a1i φ 0 ..^ W
11 poss 0 ..^ W < Po < Po 0 ..^ W
12 10 11 syl φ < Po < Po 0 ..^ W
13 6 12 mpd φ < Po 0 ..^ W
14 ovexd φ 0 ..^ W V
15 13 2 14 chnpolleha φ I 0 ..^ W
16 1 2 chnsubseqwl φ W I = I
17 1 chnwrd φ W Word A
18 lencl W Word A W 0
19 17 18 syl φ W 0
20 hashfzo0 W 0 0 ..^ W = W
21 19 20 syl φ 0 ..^ W = W
22 21 eqcomd φ W = 0 ..^ W
23 15 16 22 3brtr4d φ W I W