Metamath Proof Explorer


Theorem chnsuslle

Description: Length of a subsequence is bounded by the length of original chain. (Contributed by Ender Ting, 30-Jan-2026)

Ref Expression
Hypotheses chnsubseq.1 ( 𝜑𝑊 ∈ ( < Chain 𝐴 ) )
chnsubseq.2 ( 𝜑𝐼 ∈ ( < Chain ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )
chnsubseq.3 ( 𝜑< Po 𝐴 )
Assertion chnsuslle ( 𝜑 → ( ♯ ‘ ( 𝑊𝐼 ) ) ≤ ( ♯ ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 chnsubseq.1 ( 𝜑𝑊 ∈ ( < Chain 𝐴 ) )
2 chnsubseq.2 ( 𝜑𝐼 ∈ ( < Chain ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )
3 chnsubseq.3 ( 𝜑< Po 𝐴 )
4 ltso < Or ℝ
5 sopo ( < Or ℝ → < Po ℝ )
6 4 5 mp1i ( 𝜑 → < Po ℝ )
7 fzossz ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℤ
8 zssre ℤ ⊆ ℝ
9 7 8 sstri ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℝ
10 9 a1i ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℝ )
11 poss ( ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℝ → ( < Po ℝ → < Po ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )
12 10 11 syl ( 𝜑 → ( < Po ℝ → < Po ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )
13 6 12 mpd ( 𝜑 → < Po ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
14 ovexd ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ V )
15 13 2 14 chnpolleha ( 𝜑 → ( ♯ ‘ 𝐼 ) ≤ ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )
16 1 2 chnsubseqwl ( 𝜑 → ( ♯ ‘ ( 𝑊𝐼 ) ) = ( ♯ ‘ 𝐼 ) )
17 1 chnwrd ( 𝜑𝑊 ∈ Word 𝐴 )
18 lencl ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 )
19 17 18 syl ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 )
20 hashfzo0 ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) )
21 19 20 syl ( 𝜑 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) )
22 21 eqcomd ( 𝜑 → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )
23 15 16 22 3brtr4d ( 𝜑 → ( ♯ ‘ ( 𝑊𝐼 ) ) ≤ ( ♯ ‘ 𝑊 ) )