| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnsubseq.1 |
⊢ ( 𝜑 → 𝑊 ∈ ( < Chain 𝐴 ) ) |
| 2 |
|
chnsubseq.2 |
⊢ ( 𝜑 → 𝐼 ∈ ( < Chain ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 3 |
|
chnsubseq.3 |
⊢ ( 𝜑 → < Po 𝐴 ) |
| 4 |
|
ltso |
⊢ < Or ℝ |
| 5 |
|
sopo |
⊢ ( < Or ℝ → < Po ℝ ) |
| 6 |
4 5
|
mp1i |
⊢ ( 𝜑 → < Po ℝ ) |
| 7 |
|
fzossz |
⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℤ |
| 8 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 9 |
7 8
|
sstri |
⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℝ |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℝ ) |
| 11 |
|
poss |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ℝ → ( < Po ℝ → < Po ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( < Po ℝ → < Po ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 13 |
6 12
|
mpd |
⊢ ( 𝜑 → < Po ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 14 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ V ) |
| 15 |
13 2 14
|
chnpolleha |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ≤ ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 16 |
1 2
|
chnsubseqwl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) |
| 17 |
1
|
chnwrd |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐴 ) |
| 18 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 20 |
|
hashfzo0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 23 |
15 16 22
|
3brtr4d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ≤ ( ♯ ‘ 𝑊 ) ) |