| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chner.1 |
⊢ ( 𝜑 → ∼ Er 𝐴 ) |
| 2 |
|
chner.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( ∼ Chain 𝐴 ) ) |
| 3 |
|
chner.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑖 = 𝐽 → ( 𝐶 ‘ 𝑖 ) = ( 𝐶 ‘ 𝐽 ) ) |
| 5 |
4
|
breq1d |
⊢ ( 𝑖 = 𝐽 → ( ( 𝐶 ‘ 𝑖 ) ∼ ( lastS ‘ 𝐶 ) ↔ ( 𝐶 ‘ 𝐽 ) ∼ ( lastS ‘ 𝐶 ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑐 = ∅ → ( ♯ ‘ 𝑐 ) = ( ♯ ‘ ∅ ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑐 = ∅ → ( 0 ..^ ( ♯ ‘ 𝑐 ) ) = ( 0 ..^ ( ♯ ‘ ∅ ) ) ) |
| 8 |
|
fveq1 |
⊢ ( 𝑐 = ∅ → ( 𝑐 ‘ 𝑖 ) = ( ∅ ‘ 𝑖 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑐 = ∅ → ( lastS ‘ 𝑐 ) = ( lastS ‘ ∅ ) ) |
| 10 |
8 9
|
breq12d |
⊢ ( 𝑐 = ∅ → ( ( 𝑐 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑐 ) ↔ ( ∅ ‘ 𝑖 ) ∼ ( lastS ‘ ∅ ) ) ) |
| 11 |
7 10
|
raleqbidv |
⊢ ( 𝑐 = ∅ → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑐 ) ) ( 𝑐 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑐 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ( ∅ ‘ 𝑖 ) ∼ ( lastS ‘ ∅ ) ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑐 = 𝑑 → ( ♯ ‘ 𝑐 ) = ( ♯ ‘ 𝑑 ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑐 = 𝑑 → ( 0 ..^ ( ♯ ‘ 𝑐 ) ) = ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) |
| 14 |
|
fveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑐 = 𝑑 → ( lastS ‘ 𝑐 ) = ( lastS ‘ 𝑑 ) ) |
| 16 |
14 15
|
breq12d |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑐 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑐 ) ↔ ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ) |
| 17 |
13 16
|
raleqbidv |
⊢ ( 𝑐 = 𝑑 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑐 ) ) ( 𝑐 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑐 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 𝑗 ) ) |
| 19 |
18
|
breq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑐 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑐 ) ↔ ( 𝑐 ‘ 𝑗 ) ∼ ( lastS ‘ 𝑐 ) ) ) |
| 20 |
19
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑐 ) ) ( 𝑐 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑐 ) ↔ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑐 ) ) ( 𝑐 ‘ 𝑗 ) ∼ ( lastS ‘ 𝑐 ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑑 ++ 〈“ 𝑥 ”〉 ) → ( ♯ ‘ 𝑐 ) = ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑐 = ( 𝑑 ++ 〈“ 𝑥 ”〉 ) → ( 0 ..^ ( ♯ ‘ 𝑐 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) |
| 23 |
|
fveq1 |
⊢ ( 𝑐 = ( 𝑑 ++ 〈“ 𝑥 ”〉 ) → ( 𝑐 ‘ 𝑗 ) = ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑑 ++ 〈“ 𝑥 ”〉 ) → ( lastS ‘ 𝑐 ) = ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) |
| 25 |
23 24
|
breq12d |
⊢ ( 𝑐 = ( 𝑑 ++ 〈“ 𝑥 ”〉 ) → ( ( 𝑐 ‘ 𝑗 ) ∼ ( lastS ‘ 𝑐 ) ↔ ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) |
| 26 |
22 25
|
raleqbidv |
⊢ ( 𝑐 = ( 𝑑 ++ 〈“ 𝑥 ”〉 ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑐 ) ) ( 𝑐 ‘ 𝑗 ) ∼ ( lastS ‘ 𝑐 ) ↔ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) |
| 27 |
20 26
|
bitrid |
⊢ ( 𝑐 = ( 𝑑 ++ 〈“ 𝑥 ”〉 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑐 ) ) ( 𝑐 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑐 ) ↔ ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( ♯ ‘ 𝑐 ) = ( ♯ ‘ 𝐶 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑐 = 𝐶 → ( 0 ..^ ( ♯ ‘ 𝑐 ) ) = ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 30 |
|
fveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑖 ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( lastS ‘ 𝑐 ) = ( lastS ‘ 𝐶 ) ) |
| 32 |
30 31
|
breq12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑐 ) ↔ ( 𝐶 ‘ 𝑖 ) ∼ ( lastS ‘ 𝐶 ) ) ) |
| 33 |
29 32
|
raleqbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑐 ) ) ( 𝑐 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑐 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶 ‘ 𝑖 ) ∼ ( lastS ‘ 𝐶 ) ) ) |
| 34 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
| 35 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 36 |
35
|
eleq1i |
⊢ ( ( ♯ ‘ ∅ ) ∈ ℕ ↔ 0 ∈ ℕ ) |
| 37 |
34 36
|
mtbir |
⊢ ¬ ( ♯ ‘ ∅ ) ∈ ℕ |
| 38 |
|
fzo0n0 |
⊢ ( ( 0 ..^ ( ♯ ‘ ∅ ) ) ≠ ∅ ↔ ( ♯ ‘ ∅ ) ∈ ℕ ) |
| 39 |
37 38
|
mtbir |
⊢ ¬ ( 0 ..^ ( ♯ ‘ ∅ ) ) ≠ ∅ |
| 40 |
|
nne |
⊢ ( ¬ ( 0 ..^ ( ♯ ‘ ∅ ) ) ≠ ∅ ↔ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ∅ ) |
| 41 |
39 40
|
mpbi |
⊢ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ∅ |
| 42 |
|
rzal |
⊢ ( ( 0 ..^ ( ♯ ‘ ∅ ) ) = ∅ → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ( ∅ ‘ 𝑖 ) ∼ ( lastS ‘ ∅ ) ) |
| 43 |
41 42
|
mp1i |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ( ∅ ‘ 𝑖 ) ∼ ( lastS ‘ ∅ ) ) |
| 44 |
1
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ∼ Er 𝐴 ) |
| 45 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 𝑥 ∈ 𝐴 ) |
| 46 |
44 45
|
erref |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 𝑥 ∼ 𝑥 ) |
| 47 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 𝑑 ∈ ( ∼ Chain 𝐴 ) ) |
| 48 |
47
|
chnwrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 𝑑 ∈ Word 𝐴 ) |
| 49 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) |
| 50 |
|
ccatws1len |
⊢ ( 𝑑 ∈ Word 𝐴 → ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) = ( ( ♯ ‘ 𝑑 ) + 1 ) ) |
| 51 |
48 50
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) = ( ( ♯ ‘ 𝑑 ) + 1 ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑑 = ∅ → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ ∅ ) ) |
| 53 |
52 35
|
eqtr2di |
⊢ ( 𝑑 = ∅ → 0 = ( ♯ ‘ 𝑑 ) ) |
| 54 |
53
|
eqcomd |
⊢ ( 𝑑 = ∅ → ( ♯ ‘ 𝑑 ) = 0 ) |
| 55 |
54
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( ♯ ‘ 𝑑 ) = 0 ) |
| 56 |
55
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( ( ♯ ‘ 𝑑 ) + 1 ) = ( 0 + 1 ) ) |
| 57 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 58 |
56 57
|
eqtrdi |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( ( ♯ ‘ 𝑑 ) + 1 ) = 1 ) |
| 59 |
51 58
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) = 1 ) |
| 60 |
59
|
oveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) = ( 0 ..^ 1 ) ) |
| 61 |
49 60
|
eleqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 𝑗 ∈ ( 0 ..^ 1 ) ) |
| 62 |
|
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
| 63 |
62
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( 0 ..^ 1 ) = { 0 } ) |
| 64 |
61 63
|
eleqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 𝑗 ∈ { 0 } ) |
| 65 |
|
elsni |
⊢ ( 𝑗 ∈ { 0 } → 𝑗 = 0 ) |
| 66 |
64 65
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 𝑗 = 0 ) |
| 67 |
53
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 0 = ( ♯ ‘ 𝑑 ) ) |
| 68 |
66 67
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → 𝑗 = ( ♯ ‘ 𝑑 ) ) |
| 69 |
|
ccats1val2 |
⊢ ( ( 𝑑 ∈ Word 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑗 = ( ♯ ‘ 𝑑 ) ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) = 𝑥 ) |
| 70 |
48 45 68 69
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) = 𝑥 ) |
| 71 |
|
lswccats1 |
⊢ ( ( 𝑑 ∈ Word 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) = 𝑥 ) |
| 72 |
48 45 71
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) = 𝑥 ) |
| 73 |
46 70 72
|
3brtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 = ∅ ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) |
| 74 |
1
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → ∼ Er 𝐴 ) |
| 75 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → 𝑑 ∈ ( ∼ Chain 𝐴 ) ) |
| 76 |
75
|
chnwrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → 𝑑 ∈ Word 𝐴 ) |
| 77 |
76
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 = ( ♯ ‘ 𝑑 ) ) → 𝑑 ∈ Word 𝐴 ) |
| 78 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 = ( ♯ ‘ 𝑑 ) ) → 𝑥 ∈ 𝐴 ) |
| 79 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 = ( ♯ ‘ 𝑑 ) ) → 𝑗 = ( ♯ ‘ 𝑑 ) ) |
| 80 |
77 78 79 69
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 = ( ♯ ‘ 𝑑 ) ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) = 𝑥 ) |
| 81 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) |
| 82 |
|
neneq |
⊢ ( 𝑑 ≠ ∅ → ¬ 𝑑 = ∅ ) |
| 83 |
82
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → ¬ 𝑑 = ∅ ) |
| 84 |
81 83
|
orcnd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → ( lastS ‘ 𝑑 ) ∼ 𝑥 ) |
| 85 |
74 84
|
ersym |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → 𝑥 ∼ ( lastS ‘ 𝑑 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 = ( ♯ ‘ 𝑑 ) ) → 𝑥 ∼ ( lastS ‘ 𝑑 ) ) |
| 87 |
80 86
|
eqbrtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 = ( ♯ ‘ 𝑑 ) ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ 𝑑 ) ) |
| 88 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑖 ) = ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ) |
| 89 |
88
|
breq1d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ↔ ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ 𝑑 ) ) ) |
| 90 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) |
| 91 |
90
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) |
| 92 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) → 𝑑 ∈ ( ∼ Chain 𝐴 ) ) |
| 93 |
92
|
chnwrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) → 𝑑 ∈ Word 𝐴 ) |
| 94 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) |
| 95 |
|
ccats1val1 |
⊢ ( ( 𝑑 ∈ Word 𝐴 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
| 96 |
93 94 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
| 97 |
96
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) → ( 𝑑 ‘ 𝑖 ) = ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑖 ) ) |
| 98 |
97
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) → ( ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ↔ ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ) |
| 99 |
98
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ) |
| 100 |
99
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ) |
| 101 |
91 100
|
mpbid |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) |
| 102 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) |
| 103 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) → 𝑑 ∈ ( ∼ Chain 𝐴 ) ) |
| 104 |
103
|
chnwrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) → 𝑑 ∈ Word 𝐴 ) |
| 105 |
104 50
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) → ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) = ( ( ♯ ‘ 𝑑 ) + 1 ) ) |
| 106 |
105
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑑 ) + 1 ) ) ) |
| 107 |
102 106
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) → 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑑 ) + 1 ) ) ) |
| 108 |
107
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑑 ) + 1 ) ) ) |
| 109 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → 𝑑 ∈ ( ∼ Chain 𝐴 ) ) |
| 110 |
109
|
chnwrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → 𝑑 ∈ Word 𝐴 ) |
| 111 |
|
lencl |
⊢ ( 𝑑 ∈ Word 𝐴 → ( ♯ ‘ 𝑑 ) ∈ ℕ0 ) |
| 112 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 113 |
112
|
eleq2i |
⊢ ( ( ♯ ‘ 𝑑 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑑 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 114 |
113
|
biimpi |
⊢ ( ( ♯ ‘ 𝑑 ) ∈ ℕ0 → ( ♯ ‘ 𝑑 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 115 |
110 111 114
|
3syl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → ( ♯ ‘ 𝑑 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 116 |
|
fzosplitsni |
⊢ ( ( ♯ ‘ 𝑑 ) ∈ ( ℤ≥ ‘ 0 ) → ( 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑑 ) + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ∨ 𝑗 = ( ♯ ‘ 𝑑 ) ) ) ) |
| 117 |
115 116
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → ( 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑑 ) + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ∨ 𝑗 = ( ♯ ‘ 𝑑 ) ) ) ) |
| 118 |
108 117
|
mpbid |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ∨ 𝑗 = ( ♯ ‘ 𝑑 ) ) ) |
| 119 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) |
| 120 |
|
df-ne |
⊢ ( 𝑗 ≠ ( ♯ ‘ 𝑑 ) ↔ ¬ 𝑗 = ( ♯ ‘ 𝑑 ) ) |
| 121 |
119 120
|
sylib |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → ¬ 𝑗 = ( ♯ ‘ 𝑑 ) ) |
| 122 |
118 121
|
olcnd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ) |
| 123 |
89 101 122
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) ∧ 𝑗 ≠ ( ♯ ‘ 𝑑 ) ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ 𝑑 ) ) |
| 124 |
87 123
|
pm2.61dane |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ 𝑑 ) ) |
| 125 |
74 124 84
|
ertrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ 𝑥 ) |
| 126 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → 𝑥 ∈ 𝐴 ) |
| 127 |
76 126 71
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) = 𝑥 ) |
| 128 |
125 127
|
breqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) ∧ 𝑑 ≠ ∅ ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) |
| 129 |
73 128
|
pm2.61dane |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ) → ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) |
| 130 |
129
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ ( ∼ Chain 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑑 = ∅ ∨ ( lastS ‘ 𝑑 ) ∼ 𝑥 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑑 ) ) ( 𝑑 ‘ 𝑖 ) ∼ ( lastS ‘ 𝑑 ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) ( ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ‘ 𝑗 ) ∼ ( lastS ‘ ( 𝑑 ++ 〈“ 𝑥 ”〉 ) ) ) |
| 131 |
11 17 27 33 2 43 130
|
chnind |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶 ‘ 𝑖 ) ∼ ( lastS ‘ 𝐶 ) ) |
| 132 |
5 131 3
|
rspcdva |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐽 ) ∼ ( lastS ‘ 𝐶 ) ) |