| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chner.1 |
⊢ ( 𝜑 → ∼ Er 𝐴 ) |
| 2 |
|
chner.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( ∼ Chain 𝐴 ) ) |
| 3 |
|
chner.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ∼ Er 𝐴 ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 𝐶 ∈ ( ∼ Chain 𝐴 ) ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 7 |
|
fzofzp1 |
⊢ ( 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) |
| 9 |
5 8
|
pfxchn |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝐶 prefix ( 𝐽 + 1 ) ) ∈ ( ∼ Chain 𝐴 ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 𝜑 ) |
| 11 |
|
animorrl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝐼 ∈ ( 0 ..^ 𝐽 ) ∨ 𝐼 = 𝐽 ) ) |
| 12 |
|
elfzonn0 |
⊢ ( 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → 𝐽 ∈ ℕ0 ) |
| 13 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 14 |
13
|
eleq2i |
⊢ ( 𝐽 ∈ ℕ0 ↔ 𝐽 ∈ ( ℤ≥ ‘ 0 ) ) |
| 15 |
14
|
biimpi |
⊢ ( 𝐽 ∈ ℕ0 → 𝐽 ∈ ( ℤ≥ ‘ 0 ) ) |
| 16 |
3 12 15
|
3syl |
⊢ ( 𝜑 → 𝐽 ∈ ( ℤ≥ ‘ 0 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 𝐽 ∈ ( ℤ≥ ‘ 0 ) ) |
| 18 |
|
fzosplitsni |
⊢ ( 𝐽 ∈ ( ℤ≥ ‘ 0 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ↔ ( 𝐼 ∈ ( 0 ..^ 𝐽 ) ∨ 𝐼 = 𝐽 ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ↔ ( 𝐼 ∈ ( 0 ..^ 𝐽 ) ∨ 𝐼 = 𝐽 ) ) ) |
| 20 |
11 19
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) |
| 21 |
10 20
|
jca |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) |
| 23 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝐶 ∈ Word 𝐴 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → 𝐶 ∈ Word 𝐴 ) |
| 25 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) |
| 27 |
|
pfxlen |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ) → ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐽 + 1 ) ) |
| 28 |
24 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐽 + 1 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) ) = ( 0 ..^ ( 𝐽 + 1 ) ) ) |
| 30 |
22 29
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) ) ) |
| 31 |
21 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) ) ) |
| 32 |
4 9 31
|
chnerlem1 |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( ( 𝐶 prefix ( 𝐽 + 1 ) ) ‘ 𝐼 ) ∼ ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) ) |
| 33 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 𝐶 ∈ Word 𝐴 ) |
| 34 |
|
pfxfv |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ ( 𝐽 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐶 ) ) ∧ 𝐼 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → ( ( 𝐶 prefix ( 𝐽 + 1 ) ) ‘ 𝐼 ) = ( 𝐶 ‘ 𝐼 ) ) |
| 35 |
33 8 20 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( ( 𝐶 prefix ( 𝐽 + 1 ) ) ‘ 𝐼 ) = ( 𝐶 ‘ 𝐼 ) ) |
| 36 |
|
lencl |
⊢ ( 𝐶 ∈ Word 𝐴 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
| 37 |
23 36
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
| 38 |
|
fz0add1fz1 |
⊢ ( ( ( ♯ ‘ 𝐶 ) ∈ ℕ0 ∧ 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) → ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) |
| 39 |
37 3 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) |
| 41 |
|
pfxfvlsw |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ ( 𝐽 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐶 ) ) ) → ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐶 ‘ ( ( 𝐽 + 1 ) − 1 ) ) ) |
| 42 |
33 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐶 ‘ ( ( 𝐽 + 1 ) − 1 ) ) ) |
| 43 |
|
elfzoel2 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐽 ) → 𝐽 ∈ ℤ ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 𝐽 ∈ ℤ ) |
| 45 |
44
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 𝐽 ∈ ℂ ) |
| 46 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → 1 ∈ ℂ ) |
| 47 |
45 46
|
pncand |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( ( 𝐽 + 1 ) − 1 ) = 𝐽 ) |
| 48 |
47
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝐶 ‘ ( ( 𝐽 + 1 ) − 1 ) ) = ( 𝐶 ‘ 𝐽 ) ) |
| 49 |
42 48
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( lastS ‘ ( 𝐶 prefix ( 𝐽 + 1 ) ) ) = ( 𝐶 ‘ 𝐽 ) ) |
| 50 |
32 35 49
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝐶 ‘ 𝐼 ) ∼ ( 𝐶 ‘ 𝐽 ) ) |