| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chner.1 |
|- ( ph -> .~ Er A ) |
| 2 |
|
chner.2 |
|- ( ph -> C e. ( .~ Chain A ) ) |
| 3 |
|
chner.3 |
|- ( ph -> J e. ( 0 ..^ ( # ` C ) ) ) |
| 4 |
1
|
adantr |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> .~ Er A ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> C e. ( .~ Chain A ) ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> J e. ( 0 ..^ ( # ` C ) ) ) |
| 7 |
|
fzofzp1 |
|- ( J e. ( 0 ..^ ( # ` C ) ) -> ( J + 1 ) e. ( 0 ... ( # ` C ) ) ) |
| 8 |
6 7
|
syl |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( J + 1 ) e. ( 0 ... ( # ` C ) ) ) |
| 9 |
5 8
|
pfxchn |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( C prefix ( J + 1 ) ) e. ( .~ Chain A ) ) |
| 10 |
|
simpl |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ph ) |
| 11 |
|
animorrl |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( I e. ( 0 ..^ J ) \/ I = J ) ) |
| 12 |
|
elfzonn0 |
|- ( J e. ( 0 ..^ ( # ` C ) ) -> J e. NN0 ) |
| 13 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 14 |
13
|
eleq2i |
|- ( J e. NN0 <-> J e. ( ZZ>= ` 0 ) ) |
| 15 |
14
|
biimpi |
|- ( J e. NN0 -> J e. ( ZZ>= ` 0 ) ) |
| 16 |
3 12 15
|
3syl |
|- ( ph -> J e. ( ZZ>= ` 0 ) ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> J e. ( ZZ>= ` 0 ) ) |
| 18 |
|
fzosplitsni |
|- ( J e. ( ZZ>= ` 0 ) -> ( I e. ( 0 ..^ ( J + 1 ) ) <-> ( I e. ( 0 ..^ J ) \/ I = J ) ) ) |
| 19 |
17 18
|
syl |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( I e. ( 0 ..^ ( J + 1 ) ) <-> ( I e. ( 0 ..^ J ) \/ I = J ) ) ) |
| 20 |
11 19
|
mpbird |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> I e. ( 0 ..^ ( J + 1 ) ) ) |
| 21 |
10 20
|
jca |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( ph /\ I e. ( 0 ..^ ( J + 1 ) ) ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ I e. ( 0 ..^ ( J + 1 ) ) ) -> I e. ( 0 ..^ ( J + 1 ) ) ) |
| 23 |
2
|
chnwrd |
|- ( ph -> C e. Word A ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ I e. ( 0 ..^ ( J + 1 ) ) ) -> C e. Word A ) |
| 25 |
3 7
|
syl |
|- ( ph -> ( J + 1 ) e. ( 0 ... ( # ` C ) ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ I e. ( 0 ..^ ( J + 1 ) ) ) -> ( J + 1 ) e. ( 0 ... ( # ` C ) ) ) |
| 27 |
|
pfxlen |
|- ( ( C e. Word A /\ ( J + 1 ) e. ( 0 ... ( # ` C ) ) ) -> ( # ` ( C prefix ( J + 1 ) ) ) = ( J + 1 ) ) |
| 28 |
24 26 27
|
syl2anc |
|- ( ( ph /\ I e. ( 0 ..^ ( J + 1 ) ) ) -> ( # ` ( C prefix ( J + 1 ) ) ) = ( J + 1 ) ) |
| 29 |
28
|
oveq2d |
|- ( ( ph /\ I e. ( 0 ..^ ( J + 1 ) ) ) -> ( 0 ..^ ( # ` ( C prefix ( J + 1 ) ) ) ) = ( 0 ..^ ( J + 1 ) ) ) |
| 30 |
22 29
|
eleqtrrd |
|- ( ( ph /\ I e. ( 0 ..^ ( J + 1 ) ) ) -> I e. ( 0 ..^ ( # ` ( C prefix ( J + 1 ) ) ) ) ) |
| 31 |
21 30
|
syl |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> I e. ( 0 ..^ ( # ` ( C prefix ( J + 1 ) ) ) ) ) |
| 32 |
4 9 31
|
chnerlem1 |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( ( C prefix ( J + 1 ) ) ` I ) .~ ( lastS ` ( C prefix ( J + 1 ) ) ) ) |
| 33 |
23
|
adantr |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> C e. Word A ) |
| 34 |
|
pfxfv |
|- ( ( C e. Word A /\ ( J + 1 ) e. ( 0 ... ( # ` C ) ) /\ I e. ( 0 ..^ ( J + 1 ) ) ) -> ( ( C prefix ( J + 1 ) ) ` I ) = ( C ` I ) ) |
| 35 |
33 8 20 34
|
syl3anc |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( ( C prefix ( J + 1 ) ) ` I ) = ( C ` I ) ) |
| 36 |
|
lencl |
|- ( C e. Word A -> ( # ` C ) e. NN0 ) |
| 37 |
23 36
|
syl |
|- ( ph -> ( # ` C ) e. NN0 ) |
| 38 |
|
fz0add1fz1 |
|- ( ( ( # ` C ) e. NN0 /\ J e. ( 0 ..^ ( # ` C ) ) ) -> ( J + 1 ) e. ( 1 ... ( # ` C ) ) ) |
| 39 |
37 3 38
|
syl2anc |
|- ( ph -> ( J + 1 ) e. ( 1 ... ( # ` C ) ) ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( J + 1 ) e. ( 1 ... ( # ` C ) ) ) |
| 41 |
|
pfxfvlsw |
|- ( ( C e. Word A /\ ( J + 1 ) e. ( 1 ... ( # ` C ) ) ) -> ( lastS ` ( C prefix ( J + 1 ) ) ) = ( C ` ( ( J + 1 ) - 1 ) ) ) |
| 42 |
33 40 41
|
syl2anc |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( lastS ` ( C prefix ( J + 1 ) ) ) = ( C ` ( ( J + 1 ) - 1 ) ) ) |
| 43 |
|
elfzoel2 |
|- ( I e. ( 0 ..^ J ) -> J e. ZZ ) |
| 44 |
43
|
adantl |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> J e. ZZ ) |
| 45 |
44
|
zcnd |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> J e. CC ) |
| 46 |
|
1cnd |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> 1 e. CC ) |
| 47 |
45 46
|
pncand |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( ( J + 1 ) - 1 ) = J ) |
| 48 |
47
|
fveq2d |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( C ` ( ( J + 1 ) - 1 ) ) = ( C ` J ) ) |
| 49 |
42 48
|
eqtrd |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( lastS ` ( C prefix ( J + 1 ) ) ) = ( C ` J ) ) |
| 50 |
32 35 49
|
3brtr3d |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( C ` I ) .~ ( C ` J ) ) |