| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chner.1 |
|- ( ph -> .~ Er A ) |
| 2 |
|
chner.2 |
|- ( ph -> C e. ( .~ Chain A ) ) |
| 3 |
|
chner.3 |
|- ( ph -> J e. ( 0 ..^ ( # ` C ) ) ) |
| 4 |
|
chner.4 |
|- ( ph -> I e. ( 0 ..^ ( # ` C ) ) ) |
| 5 |
1 2 3
|
chnerlem2 |
|- ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( C ` I ) .~ ( C ` J ) ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ J e. ( 0 ..^ I ) ) -> .~ Er A ) |
| 7 |
1 2 4
|
chnerlem2 |
|- ( ( ph /\ J e. ( 0 ..^ I ) ) -> ( C ` J ) .~ ( C ` I ) ) |
| 8 |
6 7
|
ersym |
|- ( ( ph /\ J e. ( 0 ..^ I ) ) -> ( C ` I ) .~ ( C ` J ) ) |
| 9 |
|
fveq2 |
|- ( I = J -> ( C ` I ) = ( C ` J ) ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ I = J ) -> ( C ` I ) = ( C ` J ) ) |
| 11 |
1
|
adantr |
|- ( ( ph /\ I = J ) -> .~ Er A ) |
| 12 |
2
|
chnwrd |
|- ( ph -> C e. Word A ) |
| 13 |
|
wrdsymbcl |
|- ( ( C e. Word A /\ J e. ( 0 ..^ ( # ` C ) ) ) -> ( C ` J ) e. A ) |
| 14 |
12 3 13
|
syl2anc |
|- ( ph -> ( C ` J ) e. A ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ I = J ) -> ( C ` J ) e. A ) |
| 16 |
11 15
|
erref |
|- ( ( ph /\ I = J ) -> ( C ` J ) .~ ( C ` J ) ) |
| 17 |
10 16
|
eqbrtrd |
|- ( ( ph /\ I = J ) -> ( C ` I ) .~ ( C ` J ) ) |
| 18 |
1 2 3 4
|
chnerlem3 |
|- ( ph -> ( I e. ( 0 ..^ J ) \/ J e. ( 0 ..^ I ) \/ I = J ) ) |
| 19 |
5 8 17 18
|
mpjao3dan |
|- ( ph -> ( C ` I ) .~ ( C ` J ) ) |