Metamath Proof Explorer


Theorem chner

Description: Any two elements are equivalent in a chain constructed on an equivalence relation. (Contributed by Ender Ting, 29-Jan-2026)

Ref Expression
Hypotheses chner.1
|- ( ph -> .~ Er A )
chner.2
|- ( ph -> C e. ( .~ Chain A ) )
chner.3
|- ( ph -> J e. ( 0 ..^ ( # ` C ) ) )
chner.4
|- ( ph -> I e. ( 0 ..^ ( # ` C ) ) )
Assertion chner
|- ( ph -> ( C ` I ) .~ ( C ` J ) )

Proof

Step Hyp Ref Expression
1 chner.1
 |-  ( ph -> .~ Er A )
2 chner.2
 |-  ( ph -> C e. ( .~ Chain A ) )
3 chner.3
 |-  ( ph -> J e. ( 0 ..^ ( # ` C ) ) )
4 chner.4
 |-  ( ph -> I e. ( 0 ..^ ( # ` C ) ) )
5 1 2 3 chnerlem2
 |-  ( ( ph /\ I e. ( 0 ..^ J ) ) -> ( C ` I ) .~ ( C ` J ) )
6 1 adantr
 |-  ( ( ph /\ J e. ( 0 ..^ I ) ) -> .~ Er A )
7 1 2 4 chnerlem2
 |-  ( ( ph /\ J e. ( 0 ..^ I ) ) -> ( C ` J ) .~ ( C ` I ) )
8 6 7 ersym
 |-  ( ( ph /\ J e. ( 0 ..^ I ) ) -> ( C ` I ) .~ ( C ` J ) )
9 fveq2
 |-  ( I = J -> ( C ` I ) = ( C ` J ) )
10 9 adantl
 |-  ( ( ph /\ I = J ) -> ( C ` I ) = ( C ` J ) )
11 1 adantr
 |-  ( ( ph /\ I = J ) -> .~ Er A )
12 2 chnwrd
 |-  ( ph -> C e. Word A )
13 wrdsymbcl
 |-  ( ( C e. Word A /\ J e. ( 0 ..^ ( # ` C ) ) ) -> ( C ` J ) e. A )
14 12 3 13 syl2anc
 |-  ( ph -> ( C ` J ) e. A )
15 14 adantr
 |-  ( ( ph /\ I = J ) -> ( C ` J ) e. A )
16 11 15 erref
 |-  ( ( ph /\ I = J ) -> ( C ` J ) .~ ( C ` J ) )
17 10 16 eqbrtrd
 |-  ( ( ph /\ I = J ) -> ( C ` I ) .~ ( C ` J ) )
18 1 2 3 4 chnerlem3
 |-  ( ph -> ( I e. ( 0 ..^ J ) \/ J e. ( 0 ..^ I ) \/ I = J ) )
19 5 8 17 18 mpjao3dan
 |-  ( ph -> ( C ` I ) .~ ( C ` J ) )