| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nthrucw.1 |
|- .< = { <. x , y >. | x C. y } |
| 2 |
|
df-s8 |
|- <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR CC "> = ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ++ <" CC "> ) |
| 3 |
|
cnex |
|- CC e. _V |
| 4 |
3
|
a1i |
|- ( T. -> CC e. _V ) |
| 5 |
|
df-s7 |
|- <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> = ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ++ <" RR "> ) |
| 6 |
|
reex |
|- RR e. _V |
| 7 |
6
|
a1i |
|- ( T. -> RR e. _V ) |
| 8 |
|
df-s6 |
|- <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> = ( <" { 1 } NN NN0 ZZ QQ "> ++ <" ( AA i^i RR ) "> ) |
| 9 |
6
|
inex2 |
|- ( AA i^i RR ) e. _V |
| 10 |
9
|
a1i |
|- ( T. -> ( AA i^i RR ) e. _V ) |
| 11 |
|
df-s5 |
|- <" { 1 } NN NN0 ZZ QQ "> = ( <" { 1 } NN NN0 ZZ "> ++ <" QQ "> ) |
| 12 |
|
qex |
|- QQ e. _V |
| 13 |
12
|
a1i |
|- ( T. -> QQ e. _V ) |
| 14 |
|
df-s4 |
|- <" { 1 } NN NN0 ZZ "> = ( <" { 1 } NN NN0 "> ++ <" ZZ "> ) |
| 15 |
|
zex |
|- ZZ e. _V |
| 16 |
15
|
a1i |
|- ( T. -> ZZ e. _V ) |
| 17 |
|
df-s3 |
|- <" { 1 } NN NN0 "> = ( <" { 1 } NN "> ++ <" NN0 "> ) |
| 18 |
|
nn0ex |
|- NN0 e. _V |
| 19 |
18
|
a1i |
|- ( T. -> NN0 e. _V ) |
| 20 |
|
df-s2 |
|- <" { 1 } NN "> = ( <" { 1 } "> ++ <" NN "> ) |
| 21 |
|
nnex |
|- NN e. _V |
| 22 |
21
|
a1i |
|- ( T. -> NN e. _V ) |
| 23 |
|
snex |
|- { 1 } e. _V |
| 24 |
23
|
a1i |
|- ( T. -> { 1 } e. _V ) |
| 25 |
24
|
s1chn |
|- ( T. -> <" { 1 } "> e. ( .< Chain _V ) ) |
| 26 |
|
lsws1 |
|- ( { 1 } e. _V -> ( lastS ` <" { 1 } "> ) = { 1 } ) |
| 27 |
23 26
|
ax-mp |
|- ( lastS ` <" { 1 } "> ) = { 1 } |
| 28 |
|
1nn |
|- 1 e. NN |
| 29 |
|
1ex |
|- 1 e. _V |
| 30 |
29
|
snss |
|- ( 1 e. NN <-> { 1 } C_ NN ) |
| 31 |
28 30
|
mpbi |
|- { 1 } C_ NN |
| 32 |
|
2nn |
|- 2 e. NN |
| 33 |
|
1re |
|- 1 e. RR |
| 34 |
|
1lt2 |
|- 1 < 2 |
| 35 |
|
ltne |
|- ( ( 1 e. RR /\ 1 < 2 ) -> 2 =/= 1 ) |
| 36 |
33 34 35
|
mp2an |
|- 2 =/= 1 |
| 37 |
|
nelsn |
|- ( 2 =/= 1 -> -. 2 e. { 1 } ) |
| 38 |
36 37
|
ax-mp |
|- -. 2 e. { 1 } |
| 39 |
32 38
|
pm3.2i |
|- ( 2 e. NN /\ -. 2 e. { 1 } ) |
| 40 |
|
ssnelpss |
|- ( { 1 } C_ NN -> ( ( 2 e. NN /\ -. 2 e. { 1 } ) -> { 1 } C. NN ) ) |
| 41 |
31 39 40
|
mp2 |
|- { 1 } C. NN |
| 42 |
|
psseq1 |
|- ( x = { 1 } -> ( x C. y <-> { 1 } C. y ) ) |
| 43 |
|
psseq2 |
|- ( y = NN -> ( { 1 } C. y <-> { 1 } C. NN ) ) |
| 44 |
42 43 1
|
brabg |
|- ( ( { 1 } e. _V /\ NN e. _V ) -> ( { 1 } .< NN <-> { 1 } C. NN ) ) |
| 45 |
23 21 44
|
mp2an |
|- ( { 1 } .< NN <-> { 1 } C. NN ) |
| 46 |
41 45
|
mpbir |
|- { 1 } .< NN |
| 47 |
27 46
|
eqbrtri |
|- ( lastS ` <" { 1 } "> ) .< NN |
| 48 |
47
|
a1i |
|- ( T. -> ( lastS ` <" { 1 } "> ) .< NN ) |
| 49 |
48
|
olcd |
|- ( T. -> ( <" { 1 } "> = (/) \/ ( lastS ` <" { 1 } "> ) .< NN ) ) |
| 50 |
22 25 49
|
chnccats1 |
|- ( T. -> ( <" { 1 } "> ++ <" NN "> ) e. ( .< Chain _V ) ) |
| 51 |
20 50
|
eqeltrid |
|- ( T. -> <" { 1 } NN "> e. ( .< Chain _V ) ) |
| 52 |
|
lsws2 |
|- ( NN e. _V -> ( lastS ` <" { 1 } NN "> ) = NN ) |
| 53 |
21 52
|
ax-mp |
|- ( lastS ` <" { 1 } NN "> ) = NN |
| 54 |
|
nthruz |
|- ( NN C. NN0 /\ NN0 C. ZZ ) |
| 55 |
54
|
simpli |
|- NN C. NN0 |
| 56 |
|
psseq1 |
|- ( x = NN -> ( x C. y <-> NN C. y ) ) |
| 57 |
|
psseq2 |
|- ( y = NN0 -> ( NN C. y <-> NN C. NN0 ) ) |
| 58 |
56 57 1
|
brabg |
|- ( ( NN e. _V /\ NN0 e. _V ) -> ( NN .< NN0 <-> NN C. NN0 ) ) |
| 59 |
21 18 58
|
mp2an |
|- ( NN .< NN0 <-> NN C. NN0 ) |
| 60 |
55 59
|
mpbir |
|- NN .< NN0 |
| 61 |
53 60
|
eqbrtri |
|- ( lastS ` <" { 1 } NN "> ) .< NN0 |
| 62 |
61
|
a1i |
|- ( T. -> ( lastS ` <" { 1 } NN "> ) .< NN0 ) |
| 63 |
62
|
olcd |
|- ( T. -> ( <" { 1 } NN "> = (/) \/ ( lastS ` <" { 1 } NN "> ) .< NN0 ) ) |
| 64 |
19 51 63
|
chnccats1 |
|- ( T. -> ( <" { 1 } NN "> ++ <" NN0 "> ) e. ( .< Chain _V ) ) |
| 65 |
17 64
|
eqeltrid |
|- ( T. -> <" { 1 } NN NN0 "> e. ( .< Chain _V ) ) |
| 66 |
|
lsws3 |
|- ( NN0 e. _V -> ( lastS ` <" { 1 } NN NN0 "> ) = NN0 ) |
| 67 |
18 66
|
ax-mp |
|- ( lastS ` <" { 1 } NN NN0 "> ) = NN0 |
| 68 |
54
|
simpri |
|- NN0 C. ZZ |
| 69 |
|
psseq1 |
|- ( x = NN0 -> ( x C. y <-> NN0 C. y ) ) |
| 70 |
|
psseq2 |
|- ( y = ZZ -> ( NN0 C. y <-> NN0 C. ZZ ) ) |
| 71 |
69 70 1
|
brabg |
|- ( ( NN0 e. _V /\ ZZ e. _V ) -> ( NN0 .< ZZ <-> NN0 C. ZZ ) ) |
| 72 |
18 15 71
|
mp2an |
|- ( NN0 .< ZZ <-> NN0 C. ZZ ) |
| 73 |
68 72
|
mpbir |
|- NN0 .< ZZ |
| 74 |
67 73
|
eqbrtri |
|- ( lastS ` <" { 1 } NN NN0 "> ) .< ZZ |
| 75 |
74
|
a1i |
|- ( T. -> ( lastS ` <" { 1 } NN NN0 "> ) .< ZZ ) |
| 76 |
75
|
olcd |
|- ( T. -> ( <" { 1 } NN NN0 "> = (/) \/ ( lastS ` <" { 1 } NN NN0 "> ) .< ZZ ) ) |
| 77 |
16 65 76
|
chnccats1 |
|- ( T. -> ( <" { 1 } NN NN0 "> ++ <" ZZ "> ) e. ( .< Chain _V ) ) |
| 78 |
14 77
|
eqeltrid |
|- ( T. -> <" { 1 } NN NN0 ZZ "> e. ( .< Chain _V ) ) |
| 79 |
|
lsws4 |
|- ( ZZ e. _V -> ( lastS ` <" { 1 } NN NN0 ZZ "> ) = ZZ ) |
| 80 |
15 79
|
ax-mp |
|- ( lastS ` <" { 1 } NN NN0 ZZ "> ) = ZZ |
| 81 |
|
nthruc |
|- ( ( NN C. ZZ /\ ZZ C. QQ ) /\ ( QQ C. RR /\ RR C. CC ) ) |
| 82 |
81
|
simpli |
|- ( NN C. ZZ /\ ZZ C. QQ ) |
| 83 |
82
|
simpri |
|- ZZ C. QQ |
| 84 |
|
psseq1 |
|- ( x = ZZ -> ( x C. y <-> ZZ C. y ) ) |
| 85 |
|
psseq2 |
|- ( y = QQ -> ( ZZ C. y <-> ZZ C. QQ ) ) |
| 86 |
84 85 1
|
brabg |
|- ( ( ZZ e. _V /\ QQ e. _V ) -> ( ZZ .< QQ <-> ZZ C. QQ ) ) |
| 87 |
15 12 86
|
mp2an |
|- ( ZZ .< QQ <-> ZZ C. QQ ) |
| 88 |
83 87
|
mpbir |
|- ZZ .< QQ |
| 89 |
80 88
|
eqbrtri |
|- ( lastS ` <" { 1 } NN NN0 ZZ "> ) .< QQ |
| 90 |
89
|
a1i |
|- ( T. -> ( lastS ` <" { 1 } NN NN0 ZZ "> ) .< QQ ) |
| 91 |
90
|
olcd |
|- ( T. -> ( <" { 1 } NN NN0 ZZ "> = (/) \/ ( lastS ` <" { 1 } NN NN0 ZZ "> ) .< QQ ) ) |
| 92 |
13 78 91
|
chnccats1 |
|- ( T. -> ( <" { 1 } NN NN0 ZZ "> ++ <" QQ "> ) e. ( .< Chain _V ) ) |
| 93 |
11 92
|
eqeltrid |
|- ( T. -> <" { 1 } NN NN0 ZZ QQ "> e. ( .< Chain _V ) ) |
| 94 |
|
s5cli |
|- <" { 1 } NN NN0 ZZ QQ "> e. Word _V |
| 95 |
|
lsw |
|- ( <" { 1 } NN NN0 ZZ QQ "> e. Word _V -> ( lastS ` <" { 1 } NN NN0 ZZ QQ "> ) = ( <" { 1 } NN NN0 ZZ QQ "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ "> ) - 1 ) ) ) |
| 96 |
94 95
|
ax-mp |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ "> ) = ( <" { 1 } NN NN0 ZZ QQ "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ "> ) - 1 ) ) |
| 97 |
|
s5len |
|- ( # ` <" { 1 } NN NN0 ZZ QQ "> ) = 5 |
| 98 |
97
|
oveq1i |
|- ( ( # ` <" { 1 } NN NN0 ZZ QQ "> ) - 1 ) = ( 5 - 1 ) |
| 99 |
|
5m1e4 |
|- ( 5 - 1 ) = 4 |
| 100 |
98 99
|
eqtri |
|- ( ( # ` <" { 1 } NN NN0 ZZ QQ "> ) - 1 ) = 4 |
| 101 |
100
|
fveq2i |
|- ( <" { 1 } NN NN0 ZZ QQ "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ "> ) - 1 ) ) = ( <" { 1 } NN NN0 ZZ QQ "> ` 4 ) |
| 102 |
96 101
|
eqtri |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ "> ) = ( <" { 1 } NN NN0 ZZ QQ "> ` 4 ) |
| 103 |
|
s4cli |
|- <" { 1 } NN NN0 ZZ "> e. Word _V |
| 104 |
|
s4len |
|- ( # ` <" { 1 } NN NN0 ZZ "> ) = 4 |
| 105 |
11 103 104
|
cats1fvn |
|- ( QQ e. _V -> ( <" { 1 } NN NN0 ZZ QQ "> ` 4 ) = QQ ) |
| 106 |
12 105
|
ax-mp |
|- ( <" { 1 } NN NN0 ZZ QQ "> ` 4 ) = QQ |
| 107 |
102 106
|
eqtri |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ "> ) = QQ |
| 108 |
|
qssaa |
|- QQ C_ AA |
| 109 |
|
qssre |
|- QQ C_ RR |
| 110 |
108 109
|
ssini |
|- QQ C_ ( AA i^i RR ) |
| 111 |
|
2cn |
|- 2 e. CC |
| 112 |
|
sqrtcl |
|- ( 2 e. CC -> ( sqrt ` 2 ) e. CC ) |
| 113 |
111 112
|
ax-mp |
|- ( sqrt ` 2 ) e. CC |
| 114 |
|
zsscn |
|- ZZ C_ CC |
| 115 |
|
1z |
|- 1 e. ZZ |
| 116 |
|
2nn0 |
|- 2 e. NN0 |
| 117 |
|
plypow |
|- ( ( ZZ C_ CC /\ 1 e. ZZ /\ 2 e. NN0 ) -> ( x e. CC |-> ( x ^ 2 ) ) e. ( Poly ` ZZ ) ) |
| 118 |
114 115 116 117
|
mp3an |
|- ( x e. CC |-> ( x ^ 2 ) ) e. ( Poly ` ZZ ) |
| 119 |
118
|
a1i |
|- ( T. -> ( x e. CC |-> ( x ^ 2 ) ) e. ( Poly ` ZZ ) ) |
| 120 |
|
2z |
|- 2 e. ZZ |
| 121 |
114 120
|
pm3.2i |
|- ( ZZ C_ CC /\ 2 e. ZZ ) |
| 122 |
|
plyconst |
|- ( ( ZZ C_ CC /\ 2 e. ZZ ) -> ( CC X. { 2 } ) e. ( Poly ` ZZ ) ) |
| 123 |
121 122
|
mp1i |
|- ( T. -> ( CC X. { 2 } ) e. ( Poly ` ZZ ) ) |
| 124 |
|
zaddcl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a + b ) e. ZZ ) |
| 125 |
124
|
adantl |
|- ( ( T. /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a + b ) e. ZZ ) |
| 126 |
|
zmulcl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a x. b ) e. ZZ ) |
| 127 |
126
|
adantl |
|- ( ( T. /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a x. b ) e. ZZ ) |
| 128 |
|
neg1z |
|- -u 1 e. ZZ |
| 129 |
128
|
a1i |
|- ( T. -> -u 1 e. ZZ ) |
| 130 |
119 123 125 127 129
|
plysub |
|- ( T. -> ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. ( Poly ` ZZ ) ) |
| 131 |
130
|
mptru |
|- ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. ( Poly ` ZZ ) |
| 132 |
|
0cn |
|- 0 e. CC |
| 133 |
|
ovex |
|- ( x ^ 2 ) e. _V |
| 134 |
133
|
rgenw |
|- A. x e. CC ( x ^ 2 ) e. _V |
| 135 |
|
nfcv |
|- F/_ x CC |
| 136 |
135
|
mptfnf |
|- ( A. x e. CC ( x ^ 2 ) e. _V <-> ( x e. CC |-> ( x ^ 2 ) ) Fn CC ) |
| 137 |
134 136
|
mpbi |
|- ( x e. CC |-> ( x ^ 2 ) ) Fn CC |
| 138 |
|
2ex |
|- 2 e. _V |
| 139 |
|
fconstmpt |
|- ( CC X. { 2 } ) = ( a e. CC |-> 2 ) |
| 140 |
138 139
|
fnmpti |
|- ( CC X. { 2 } ) Fn CC |
| 141 |
|
fnfvof |
|- ( ( ( ( x e. CC |-> ( x ^ 2 ) ) Fn CC /\ ( CC X. { 2 } ) Fn CC ) /\ ( CC e. _V /\ 0 e. CC ) ) -> ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` 0 ) = ( ( ( x e. CC |-> ( x ^ 2 ) ) ` 0 ) - ( ( CC X. { 2 } ) ` 0 ) ) ) |
| 142 |
137 140 141
|
mpanl12 |
|- ( ( CC e. _V /\ 0 e. CC ) -> ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` 0 ) = ( ( ( x e. CC |-> ( x ^ 2 ) ) ` 0 ) - ( ( CC X. { 2 } ) ` 0 ) ) ) |
| 143 |
3 132 142
|
mp2an |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` 0 ) = ( ( ( x e. CC |-> ( x ^ 2 ) ) ` 0 ) - ( ( CC X. { 2 } ) ` 0 ) ) |
| 144 |
|
oveq1 |
|- ( x = 0 -> ( x ^ 2 ) = ( 0 ^ 2 ) ) |
| 145 |
|
eqid |
|- ( x e. CC |-> ( x ^ 2 ) ) = ( x e. CC |-> ( x ^ 2 ) ) |
| 146 |
|
ovex |
|- ( 0 ^ 2 ) e. _V |
| 147 |
144 145 146
|
fvmpt |
|- ( 0 e. CC -> ( ( x e. CC |-> ( x ^ 2 ) ) ` 0 ) = ( 0 ^ 2 ) ) |
| 148 |
132 147
|
ax-mp |
|- ( ( x e. CC |-> ( x ^ 2 ) ) ` 0 ) = ( 0 ^ 2 ) |
| 149 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
| 150 |
148 149
|
eqtri |
|- ( ( x e. CC |-> ( x ^ 2 ) ) ` 0 ) = 0 |
| 151 |
138
|
fvconst2 |
|- ( 0 e. CC -> ( ( CC X. { 2 } ) ` 0 ) = 2 ) |
| 152 |
132 151
|
ax-mp |
|- ( ( CC X. { 2 } ) ` 0 ) = 2 |
| 153 |
150 152
|
oveq12i |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) ` 0 ) - ( ( CC X. { 2 } ) ` 0 ) ) = ( 0 - 2 ) |
| 154 |
143 153
|
eqtri |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` 0 ) = ( 0 - 2 ) |
| 155 |
|
df-neg |
|- -u 2 = ( 0 - 2 ) |
| 156 |
154 155
|
eqtr4i |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` 0 ) = -u 2 |
| 157 |
|
2re |
|- 2 e. RR |
| 158 |
157
|
renegcli |
|- -u 2 e. RR |
| 159 |
|
2pos |
|- 0 < 2 |
| 160 |
|
lt0neg2 |
|- ( 2 e. RR -> ( 0 < 2 <-> -u 2 < 0 ) ) |
| 161 |
157 160
|
ax-mp |
|- ( 0 < 2 <-> -u 2 < 0 ) |
| 162 |
159 161
|
mpbi |
|- -u 2 < 0 |
| 163 |
|
ltne |
|- ( ( -u 2 e. RR /\ -u 2 < 0 ) -> 0 =/= -u 2 ) |
| 164 |
158 162 163
|
mp2an |
|- 0 =/= -u 2 |
| 165 |
164
|
necomi |
|- -u 2 =/= 0 |
| 166 |
156 165
|
eqnetri |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` 0 ) =/= 0 |
| 167 |
132 166
|
pm3.2i |
|- ( 0 e. CC /\ ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` 0 ) =/= 0 ) |
| 168 |
|
ne0p |
|- ( ( 0 e. CC /\ ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` 0 ) =/= 0 ) -> ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) =/= 0p ) |
| 169 |
|
nelsn |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) =/= 0p -> -. ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. { 0p } ) |
| 170 |
167 168 169
|
mp2b |
|- -. ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. { 0p } |
| 171 |
131 170
|
pm3.2i |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. ( Poly ` ZZ ) /\ -. ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. { 0p } ) |
| 172 |
|
eldif |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) <-> ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. ( Poly ` ZZ ) /\ -. ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. { 0p } ) ) |
| 173 |
171 172
|
mpbir |
|- ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) |
| 174 |
|
fconstmpt |
|- ( CC X. { 2 } ) = ( b e. CC |-> 2 ) |
| 175 |
138 174
|
fnmpti |
|- ( CC X. { 2 } ) Fn CC |
| 176 |
|
fnfvof |
|- ( ( ( ( x e. CC |-> ( x ^ 2 ) ) Fn CC /\ ( CC X. { 2 } ) Fn CC ) /\ ( CC e. _V /\ ( sqrt ` 2 ) e. CC ) ) -> ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` ( sqrt ` 2 ) ) = ( ( ( x e. CC |-> ( x ^ 2 ) ) ` ( sqrt ` 2 ) ) - ( ( CC X. { 2 } ) ` ( sqrt ` 2 ) ) ) ) |
| 177 |
137 175 176
|
mpanl12 |
|- ( ( CC e. _V /\ ( sqrt ` 2 ) e. CC ) -> ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` ( sqrt ` 2 ) ) = ( ( ( x e. CC |-> ( x ^ 2 ) ) ` ( sqrt ` 2 ) ) - ( ( CC X. { 2 } ) ` ( sqrt ` 2 ) ) ) ) |
| 178 |
3 113 177
|
mp2an |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` ( sqrt ` 2 ) ) = ( ( ( x e. CC |-> ( x ^ 2 ) ) ` ( sqrt ` 2 ) ) - ( ( CC X. { 2 } ) ` ( sqrt ` 2 ) ) ) |
| 179 |
|
oveq1 |
|- ( x = ( sqrt ` 2 ) -> ( x ^ 2 ) = ( ( sqrt ` 2 ) ^ 2 ) ) |
| 180 |
|
ovex |
|- ( ( sqrt ` 2 ) ^ 2 ) e. _V |
| 181 |
179 145 180
|
fvmpt |
|- ( ( sqrt ` 2 ) e. CC -> ( ( x e. CC |-> ( x ^ 2 ) ) ` ( sqrt ` 2 ) ) = ( ( sqrt ` 2 ) ^ 2 ) ) |
| 182 |
113 181
|
ax-mp |
|- ( ( x e. CC |-> ( x ^ 2 ) ) ` ( sqrt ` 2 ) ) = ( ( sqrt ` 2 ) ^ 2 ) |
| 183 |
|
sqrtth |
|- ( 2 e. CC -> ( ( sqrt ` 2 ) ^ 2 ) = 2 ) |
| 184 |
111 183
|
ax-mp |
|- ( ( sqrt ` 2 ) ^ 2 ) = 2 |
| 185 |
182 184
|
eqtri |
|- ( ( x e. CC |-> ( x ^ 2 ) ) ` ( sqrt ` 2 ) ) = 2 |
| 186 |
138
|
fvconst2 |
|- ( ( sqrt ` 2 ) e. CC -> ( ( CC X. { 2 } ) ` ( sqrt ` 2 ) ) = 2 ) |
| 187 |
113 186
|
ax-mp |
|- ( ( CC X. { 2 } ) ` ( sqrt ` 2 ) ) = 2 |
| 188 |
185 187
|
oveq12i |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) ` ( sqrt ` 2 ) ) - ( ( CC X. { 2 } ) ` ( sqrt ` 2 ) ) ) = ( 2 - 2 ) |
| 189 |
178 188
|
eqtri |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` ( sqrt ` 2 ) ) = ( 2 - 2 ) |
| 190 |
|
subid |
|- ( 2 e. CC -> ( 2 - 2 ) = 0 ) |
| 191 |
111 190
|
ax-mp |
|- ( 2 - 2 ) = 0 |
| 192 |
189 191
|
eqtri |
|- ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` ( sqrt ` 2 ) ) = 0 |
| 193 |
|
fveq1 |
|- ( a = ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) -> ( a ` ( sqrt ` 2 ) ) = ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` ( sqrt ` 2 ) ) ) |
| 194 |
193
|
eqeq1d |
|- ( a = ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) -> ( ( a ` ( sqrt ` 2 ) ) = 0 <-> ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` ( sqrt ` 2 ) ) = 0 ) ) |
| 195 |
194
|
rspcev |
|- ( ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` ( sqrt ` 2 ) ) = 0 ) -> E. a e. ( ( Poly ` ZZ ) \ { 0p } ) ( a ` ( sqrt ` 2 ) ) = 0 ) |
| 196 |
|
fveq1 |
|- ( a = x -> ( a ` ( sqrt ` 2 ) ) = ( x ` ( sqrt ` 2 ) ) ) |
| 197 |
196
|
eqeq1d |
|- ( a = x -> ( ( a ` ( sqrt ` 2 ) ) = 0 <-> ( x ` ( sqrt ` 2 ) ) = 0 ) ) |
| 198 |
197
|
cbvrexvw |
|- ( E. a e. ( ( Poly ` ZZ ) \ { 0p } ) ( a ` ( sqrt ` 2 ) ) = 0 <-> E. x e. ( ( Poly ` ZZ ) \ { 0p } ) ( x ` ( sqrt ` 2 ) ) = 0 ) |
| 199 |
195 198
|
sylib |
|- ( ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( ( ( x e. CC |-> ( x ^ 2 ) ) oF - ( CC X. { 2 } ) ) ` ( sqrt ` 2 ) ) = 0 ) -> E. x e. ( ( Poly ` ZZ ) \ { 0p } ) ( x ` ( sqrt ` 2 ) ) = 0 ) |
| 200 |
173 192 199
|
mp2an |
|- E. x e. ( ( Poly ` ZZ ) \ { 0p } ) ( x ` ( sqrt ` 2 ) ) = 0 |
| 201 |
113 200
|
pm3.2i |
|- ( ( sqrt ` 2 ) e. CC /\ E. x e. ( ( Poly ` ZZ ) \ { 0p } ) ( x ` ( sqrt ` 2 ) ) = 0 ) |
| 202 |
|
elaa |
|- ( ( sqrt ` 2 ) e. AA <-> ( ( sqrt ` 2 ) e. CC /\ E. x e. ( ( Poly ` ZZ ) \ { 0p } ) ( x ` ( sqrt ` 2 ) ) = 0 ) ) |
| 203 |
201 202
|
mpbir |
|- ( sqrt ` 2 ) e. AA |
| 204 |
|
sqrt2re |
|- ( sqrt ` 2 ) e. RR |
| 205 |
203 204
|
elini |
|- ( sqrt ` 2 ) e. ( AA i^i RR ) |
| 206 |
|
sqrt2irr |
|- ( sqrt ` 2 ) e/ QQ |
| 207 |
|
df-nel |
|- ( ( sqrt ` 2 ) e/ QQ <-> -. ( sqrt ` 2 ) e. QQ ) |
| 208 |
206 207
|
mpbi |
|- -. ( sqrt ` 2 ) e. QQ |
| 209 |
205 208
|
pm3.2i |
|- ( ( sqrt ` 2 ) e. ( AA i^i RR ) /\ -. ( sqrt ` 2 ) e. QQ ) |
| 210 |
|
ssnelpss |
|- ( QQ C_ ( AA i^i RR ) -> ( ( ( sqrt ` 2 ) e. ( AA i^i RR ) /\ -. ( sqrt ` 2 ) e. QQ ) -> QQ C. ( AA i^i RR ) ) ) |
| 211 |
110 209 210
|
mp2 |
|- QQ C. ( AA i^i RR ) |
| 212 |
|
psseq1 |
|- ( x = QQ -> ( x C. y <-> QQ C. y ) ) |
| 213 |
|
psseq2 |
|- ( y = ( AA i^i RR ) -> ( QQ C. y <-> QQ C. ( AA i^i RR ) ) ) |
| 214 |
212 213 1
|
brabg |
|- ( ( QQ e. _V /\ ( AA i^i RR ) e. _V ) -> ( QQ .< ( AA i^i RR ) <-> QQ C. ( AA i^i RR ) ) ) |
| 215 |
12 9 214
|
mp2an |
|- ( QQ .< ( AA i^i RR ) <-> QQ C. ( AA i^i RR ) ) |
| 216 |
211 215
|
mpbir |
|- QQ .< ( AA i^i RR ) |
| 217 |
107 216
|
eqbrtri |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ "> ) .< ( AA i^i RR ) |
| 218 |
217
|
a1i |
|- ( T. -> ( lastS ` <" { 1 } NN NN0 ZZ QQ "> ) .< ( AA i^i RR ) ) |
| 219 |
218
|
olcd |
|- ( T. -> ( <" { 1 } NN NN0 ZZ QQ "> = (/) \/ ( lastS ` <" { 1 } NN NN0 ZZ QQ "> ) .< ( AA i^i RR ) ) ) |
| 220 |
10 93 219
|
chnccats1 |
|- ( T. -> ( <" { 1 } NN NN0 ZZ QQ "> ++ <" ( AA i^i RR ) "> ) e. ( .< Chain _V ) ) |
| 221 |
8 220
|
eqeltrid |
|- ( T. -> <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> e. ( .< Chain _V ) ) |
| 222 |
|
s6cli |
|- <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> e. Word _V |
| 223 |
|
lsw |
|- ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> e. Word _V -> ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) = ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) - 1 ) ) ) |
| 224 |
222 223
|
ax-mp |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) = ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) - 1 ) ) |
| 225 |
|
s6len |
|- ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) = 6 |
| 226 |
225
|
oveq1i |
|- ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) - 1 ) = ( 6 - 1 ) |
| 227 |
|
6m1e5 |
|- ( 6 - 1 ) = 5 |
| 228 |
226 227
|
eqtri |
|- ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) - 1 ) = 5 |
| 229 |
228
|
fveq2i |
|- ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) - 1 ) ) = ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ` 5 ) |
| 230 |
224 229
|
eqtri |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) = ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ` 5 ) |
| 231 |
8 94 97
|
cats1fvn |
|- ( ( AA i^i RR ) e. _V -> ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ` 5 ) = ( AA i^i RR ) ) |
| 232 |
9 231
|
ax-mp |
|- ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ` 5 ) = ( AA i^i RR ) |
| 233 |
230 232
|
eqtri |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) = ( AA i^i RR ) |
| 234 |
|
inss2 |
|- ( AA i^i RR ) C_ RR |
| 235 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 236 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 237 |
|
id |
|- ( k e. NN -> k e. NN ) |
| 238 |
|
ovexd |
|- ( k e. NN -> ( 2 ^ -u ( ! ` k ) ) e. _V ) |
| 239 |
|
id |
|- ( a = k -> a = k ) |
| 240 |
239
|
fveq2d |
|- ( a = k -> ( ! ` a ) = ( ! ` k ) ) |
| 241 |
240
|
negeqd |
|- ( a = k -> -u ( ! ` a ) = -u ( ! ` k ) ) |
| 242 |
241
|
oveq2d |
|- ( a = k -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` k ) ) ) |
| 243 |
|
eqid |
|- ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) |
| 244 |
242 243
|
fvmptg |
|- ( ( k e. NN /\ ( 2 ^ -u ( ! ` k ) ) e. _V ) -> ( ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) ` k ) = ( 2 ^ -u ( ! ` k ) ) ) |
| 245 |
237 238 244
|
syl2anc |
|- ( k e. NN -> ( ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) ` k ) = ( 2 ^ -u ( ! ` k ) ) ) |
| 246 |
245
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) ` k ) = ( 2 ^ -u ( ! ` k ) ) ) |
| 247 |
157
|
a1i |
|- ( k e. NN -> 2 e. RR ) |
| 248 |
|
2ne0 |
|- 2 =/= 0 |
| 249 |
248
|
a1i |
|- ( k e. NN -> 2 =/= 0 ) |
| 250 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 251 |
250
|
faccld |
|- ( k e. NN -> ( ! ` k ) e. NN ) |
| 252 |
|
nnz |
|- ( ( ! ` k ) e. NN -> ( ! ` k ) e. ZZ ) |
| 253 |
|
znegcl |
|- ( ( ! ` k ) e. ZZ -> -u ( ! ` k ) e. ZZ ) |
| 254 |
251 252 253
|
3syl |
|- ( k e. NN -> -u ( ! ` k ) e. ZZ ) |
| 255 |
247 249 254
|
reexpclzd |
|- ( k e. NN -> ( 2 ^ -u ( ! ` k ) ) e. RR ) |
| 256 |
255
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( 2 ^ -u ( ! ` k ) ) e. RR ) |
| 257 |
|
eqid |
|- ( n e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( n - 1 ) ) ) ) = ( n e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( n - 1 ) ) ) ) |
| 258 |
257 243
|
aaliou3lem3 |
|- ( 1 e. NN -> ( seq 1 ( + , ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` 1 ) ( ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` 1 ) ( ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` 1 ) ) ) ) ) |
| 259 |
258
|
simp1d |
|- ( 1 e. NN -> seq 1 ( + , ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) ) e. dom ~~> ) |
| 260 |
28 259
|
mp1i |
|- ( T. -> seq 1 ( + , ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) ) e. dom ~~> ) |
| 261 |
235 236 246 256 260
|
isumrecl |
|- ( T. -> sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. RR ) |
| 262 |
261
|
mptru |
|- sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. RR |
| 263 |
|
aaliou3 |
|- sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e/ AA |
| 264 |
|
df-nel |
|- ( sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e/ AA <-> -. sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. AA ) |
| 265 |
263 264
|
mpbi |
|- -. sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. AA |
| 266 |
|
elinel1 |
|- ( sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. ( AA i^i RR ) -> sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. AA ) |
| 267 |
265 266
|
mto |
|- -. sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. ( AA i^i RR ) |
| 268 |
262 267
|
pm3.2i |
|- ( sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. RR /\ -. sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. ( AA i^i RR ) ) |
| 269 |
|
ssnelpss |
|- ( ( AA i^i RR ) C_ RR -> ( ( sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. RR /\ -. sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. ( AA i^i RR ) ) -> ( AA i^i RR ) C. RR ) ) |
| 270 |
234 268 269
|
mp2 |
|- ( AA i^i RR ) C. RR |
| 271 |
|
psseq1 |
|- ( x = ( AA i^i RR ) -> ( x C. y <-> ( AA i^i RR ) C. y ) ) |
| 272 |
|
psseq2 |
|- ( y = RR -> ( ( AA i^i RR ) C. y <-> ( AA i^i RR ) C. RR ) ) |
| 273 |
271 272 1
|
brabg |
|- ( ( ( AA i^i RR ) e. _V /\ RR e. _V ) -> ( ( AA i^i RR ) .< RR <-> ( AA i^i RR ) C. RR ) ) |
| 274 |
9 6 273
|
mp2an |
|- ( ( AA i^i RR ) .< RR <-> ( AA i^i RR ) C. RR ) |
| 275 |
270 274
|
mpbir |
|- ( AA i^i RR ) .< RR |
| 276 |
233 275
|
eqbrtri |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) .< RR |
| 277 |
276
|
a1i |
|- ( T. -> ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) .< RR ) |
| 278 |
277
|
olcd |
|- ( T. -> ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> = (/) \/ ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ) .< RR ) ) |
| 279 |
7 221 278
|
chnccats1 |
|- ( T. -> ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) "> ++ <" RR "> ) e. ( .< Chain _V ) ) |
| 280 |
5 279
|
eqeltrid |
|- ( T. -> <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> e. ( .< Chain _V ) ) |
| 281 |
|
s7cli |
|- <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> e. Word _V |
| 282 |
|
lsw |
|- ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> e. Word _V -> ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) = ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) - 1 ) ) ) |
| 283 |
281 282
|
ax-mp |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) = ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) - 1 ) ) |
| 284 |
|
s7len |
|- ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) = 7 |
| 285 |
284
|
oveq1i |
|- ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) - 1 ) = ( 7 - 1 ) |
| 286 |
|
7m1e6 |
|- ( 7 - 1 ) = 6 |
| 287 |
285 286
|
eqtri |
|- ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) - 1 ) = 6 |
| 288 |
287
|
fveq2i |
|- ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) - 1 ) ) = ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ` 6 ) |
| 289 |
5 222 225
|
cats1fvn |
|- ( RR e. _V -> ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ` 6 ) = RR ) |
| 290 |
6 289
|
ax-mp |
|- ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ` 6 ) = RR |
| 291 |
288 290
|
eqtri |
|- ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ` ( ( # ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) - 1 ) ) = RR |
| 292 |
283 291
|
eqtri |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) = RR |
| 293 |
81
|
simpri |
|- ( QQ C. RR /\ RR C. CC ) |
| 294 |
293
|
simpri |
|- RR C. CC |
| 295 |
|
psseq1 |
|- ( x = RR -> ( x C. y <-> RR C. y ) ) |
| 296 |
|
psseq2 |
|- ( y = CC -> ( RR C. y <-> RR C. CC ) ) |
| 297 |
295 296 1
|
brabg |
|- ( ( RR e. _V /\ CC e. _V ) -> ( RR .< CC <-> RR C. CC ) ) |
| 298 |
6 3 297
|
mp2an |
|- ( RR .< CC <-> RR C. CC ) |
| 299 |
294 298
|
mpbir |
|- RR .< CC |
| 300 |
292 299
|
eqbrtri |
|- ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) .< CC |
| 301 |
300
|
a1i |
|- ( T. -> ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) .< CC ) |
| 302 |
301
|
olcd |
|- ( T. -> ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> = (/) \/ ( lastS ` <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ) .< CC ) ) |
| 303 |
4 280 302
|
chnccats1 |
|- ( T. -> ( <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR "> ++ <" CC "> ) e. ( .< Chain _V ) ) |
| 304 |
2 303
|
eqeltrid |
|- ( T. -> <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR CC "> e. ( .< Chain _V ) ) |
| 305 |
304
|
mptru |
|- <" { 1 } NN NN0 ZZ QQ ( AA i^i RR ) RR CC "> e. ( .< Chain _V ) |