| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nthrucw.1 |
⊢ < = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ⊊ 𝑦 } |
| 2 |
|
df-s8 |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ℂ ”〉 = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ++ 〈“ ℂ ”〉 ) |
| 3 |
|
cnex |
⊢ ℂ ∈ V |
| 4 |
3
|
a1i |
⊢ ( ⊤ → ℂ ∈ V ) |
| 5 |
|
df-s7 |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ++ 〈“ ℝ ”〉 ) |
| 6 |
|
reex |
⊢ ℝ ∈ V |
| 7 |
6
|
a1i |
⊢ ( ⊤ → ℝ ∈ V ) |
| 8 |
|
df-s6 |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ++ 〈“ ( 𝔸 ∩ ℝ ) ”〉 ) |
| 9 |
6
|
inex2 |
⊢ ( 𝔸 ∩ ℝ ) ∈ V |
| 10 |
9
|
a1i |
⊢ ( ⊤ → ( 𝔸 ∩ ℝ ) ∈ V ) |
| 11 |
|
df-s5 |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 = ( 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ++ 〈“ ℚ ”〉 ) |
| 12 |
|
qex |
⊢ ℚ ∈ V |
| 13 |
12
|
a1i |
⊢ ( ⊤ → ℚ ∈ V ) |
| 14 |
|
df-s4 |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ”〉 = ( 〈“ { 1 } ℕ ℕ0 ”〉 ++ 〈“ ℤ ”〉 ) |
| 15 |
|
zex |
⊢ ℤ ∈ V |
| 16 |
15
|
a1i |
⊢ ( ⊤ → ℤ ∈ V ) |
| 17 |
|
df-s3 |
⊢ 〈“ { 1 } ℕ ℕ0 ”〉 = ( 〈“ { 1 } ℕ ”〉 ++ 〈“ ℕ0 ”〉 ) |
| 18 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 19 |
18
|
a1i |
⊢ ( ⊤ → ℕ0 ∈ V ) |
| 20 |
|
df-s2 |
⊢ 〈“ { 1 } ℕ ”〉 = ( 〈“ { 1 } ”〉 ++ 〈“ ℕ ”〉 ) |
| 21 |
|
nnex |
⊢ ℕ ∈ V |
| 22 |
21
|
a1i |
⊢ ( ⊤ → ℕ ∈ V ) |
| 23 |
|
snex |
⊢ { 1 } ∈ V |
| 24 |
23
|
a1i |
⊢ ( ⊤ → { 1 } ∈ V ) |
| 25 |
24
|
s1chn |
⊢ ( ⊤ → 〈“ { 1 } ”〉 ∈ ( < Chain V ) ) |
| 26 |
|
lsws1 |
⊢ ( { 1 } ∈ V → ( lastS ‘ 〈“ { 1 } ”〉 ) = { 1 } ) |
| 27 |
23 26
|
ax-mp |
⊢ ( lastS ‘ 〈“ { 1 } ”〉 ) = { 1 } |
| 28 |
|
1nn |
⊢ 1 ∈ ℕ |
| 29 |
|
1ex |
⊢ 1 ∈ V |
| 30 |
29
|
snss |
⊢ ( 1 ∈ ℕ ↔ { 1 } ⊆ ℕ ) |
| 31 |
28 30
|
mpbi |
⊢ { 1 } ⊆ ℕ |
| 32 |
|
2nn |
⊢ 2 ∈ ℕ |
| 33 |
|
1re |
⊢ 1 ∈ ℝ |
| 34 |
|
1lt2 |
⊢ 1 < 2 |
| 35 |
|
ltne |
⊢ ( ( 1 ∈ ℝ ∧ 1 < 2 ) → 2 ≠ 1 ) |
| 36 |
33 34 35
|
mp2an |
⊢ 2 ≠ 1 |
| 37 |
|
nelsn |
⊢ ( 2 ≠ 1 → ¬ 2 ∈ { 1 } ) |
| 38 |
36 37
|
ax-mp |
⊢ ¬ 2 ∈ { 1 } |
| 39 |
32 38
|
pm3.2i |
⊢ ( 2 ∈ ℕ ∧ ¬ 2 ∈ { 1 } ) |
| 40 |
|
ssnelpss |
⊢ ( { 1 } ⊆ ℕ → ( ( 2 ∈ ℕ ∧ ¬ 2 ∈ { 1 } ) → { 1 } ⊊ ℕ ) ) |
| 41 |
31 39 40
|
mp2 |
⊢ { 1 } ⊊ ℕ |
| 42 |
|
psseq1 |
⊢ ( 𝑥 = { 1 } → ( 𝑥 ⊊ 𝑦 ↔ { 1 } ⊊ 𝑦 ) ) |
| 43 |
|
psseq2 |
⊢ ( 𝑦 = ℕ → ( { 1 } ⊊ 𝑦 ↔ { 1 } ⊊ ℕ ) ) |
| 44 |
42 43 1
|
brabg |
⊢ ( ( { 1 } ∈ V ∧ ℕ ∈ V ) → ( { 1 } < ℕ ↔ { 1 } ⊊ ℕ ) ) |
| 45 |
23 21 44
|
mp2an |
⊢ ( { 1 } < ℕ ↔ { 1 } ⊊ ℕ ) |
| 46 |
41 45
|
mpbir |
⊢ { 1 } < ℕ |
| 47 |
27 46
|
eqbrtri |
⊢ ( lastS ‘ 〈“ { 1 } ”〉 ) < ℕ |
| 48 |
47
|
a1i |
⊢ ( ⊤ → ( lastS ‘ 〈“ { 1 } ”〉 ) < ℕ ) |
| 49 |
48
|
olcd |
⊢ ( ⊤ → ( 〈“ { 1 } ”〉 = ∅ ∨ ( lastS ‘ 〈“ { 1 } ”〉 ) < ℕ ) ) |
| 50 |
22 25 49
|
chnccats1 |
⊢ ( ⊤ → ( 〈“ { 1 } ”〉 ++ 〈“ ℕ ”〉 ) ∈ ( < Chain V ) ) |
| 51 |
20 50
|
eqeltrid |
⊢ ( ⊤ → 〈“ { 1 } ℕ ”〉 ∈ ( < Chain V ) ) |
| 52 |
|
lsws2 |
⊢ ( ℕ ∈ V → ( lastS ‘ 〈“ { 1 } ℕ ”〉 ) = ℕ ) |
| 53 |
21 52
|
ax-mp |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ”〉 ) = ℕ |
| 54 |
|
nthruz |
⊢ ( ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ ) |
| 55 |
54
|
simpli |
⊢ ℕ ⊊ ℕ0 |
| 56 |
|
psseq1 |
⊢ ( 𝑥 = ℕ → ( 𝑥 ⊊ 𝑦 ↔ ℕ ⊊ 𝑦 ) ) |
| 57 |
|
psseq2 |
⊢ ( 𝑦 = ℕ0 → ( ℕ ⊊ 𝑦 ↔ ℕ ⊊ ℕ0 ) ) |
| 58 |
56 57 1
|
brabg |
⊢ ( ( ℕ ∈ V ∧ ℕ0 ∈ V ) → ( ℕ < ℕ0 ↔ ℕ ⊊ ℕ0 ) ) |
| 59 |
21 18 58
|
mp2an |
⊢ ( ℕ < ℕ0 ↔ ℕ ⊊ ℕ0 ) |
| 60 |
55 59
|
mpbir |
⊢ ℕ < ℕ0 |
| 61 |
53 60
|
eqbrtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ”〉 ) < ℕ0 |
| 62 |
61
|
a1i |
⊢ ( ⊤ → ( lastS ‘ 〈“ { 1 } ℕ ”〉 ) < ℕ0 ) |
| 63 |
62
|
olcd |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ”〉 = ∅ ∨ ( lastS ‘ 〈“ { 1 } ℕ ”〉 ) < ℕ0 ) ) |
| 64 |
19 51 63
|
chnccats1 |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ”〉 ++ 〈“ ℕ0 ”〉 ) ∈ ( < Chain V ) ) |
| 65 |
17 64
|
eqeltrid |
⊢ ( ⊤ → 〈“ { 1 } ℕ ℕ0 ”〉 ∈ ( < Chain V ) ) |
| 66 |
|
lsws3 |
⊢ ( ℕ0 ∈ V → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ”〉 ) = ℕ0 ) |
| 67 |
18 66
|
ax-mp |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ”〉 ) = ℕ0 |
| 68 |
54
|
simpri |
⊢ ℕ0 ⊊ ℤ |
| 69 |
|
psseq1 |
⊢ ( 𝑥 = ℕ0 → ( 𝑥 ⊊ 𝑦 ↔ ℕ0 ⊊ 𝑦 ) ) |
| 70 |
|
psseq2 |
⊢ ( 𝑦 = ℤ → ( ℕ0 ⊊ 𝑦 ↔ ℕ0 ⊊ ℤ ) ) |
| 71 |
69 70 1
|
brabg |
⊢ ( ( ℕ0 ∈ V ∧ ℤ ∈ V ) → ( ℕ0 < ℤ ↔ ℕ0 ⊊ ℤ ) ) |
| 72 |
18 15 71
|
mp2an |
⊢ ( ℕ0 < ℤ ↔ ℕ0 ⊊ ℤ ) |
| 73 |
68 72
|
mpbir |
⊢ ℕ0 < ℤ |
| 74 |
67 73
|
eqbrtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ”〉 ) < ℤ |
| 75 |
74
|
a1i |
⊢ ( ⊤ → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ”〉 ) < ℤ ) |
| 76 |
75
|
olcd |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ”〉 = ∅ ∨ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ”〉 ) < ℤ ) ) |
| 77 |
16 65 76
|
chnccats1 |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ”〉 ++ 〈“ ℤ ”〉 ) ∈ ( < Chain V ) ) |
| 78 |
14 77
|
eqeltrid |
⊢ ( ⊤ → 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ∈ ( < Chain V ) ) |
| 79 |
|
lsws4 |
⊢ ( ℤ ∈ V → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ) = ℤ ) |
| 80 |
15 79
|
ax-mp |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ) = ℤ |
| 81 |
|
nthruc |
⊢ ( ( ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ ) ∧ ( ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ ) ) |
| 82 |
81
|
simpli |
⊢ ( ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ ) |
| 83 |
82
|
simpri |
⊢ ℤ ⊊ ℚ |
| 84 |
|
psseq1 |
⊢ ( 𝑥 = ℤ → ( 𝑥 ⊊ 𝑦 ↔ ℤ ⊊ 𝑦 ) ) |
| 85 |
|
psseq2 |
⊢ ( 𝑦 = ℚ → ( ℤ ⊊ 𝑦 ↔ ℤ ⊊ ℚ ) ) |
| 86 |
84 85 1
|
brabg |
⊢ ( ( ℤ ∈ V ∧ ℚ ∈ V ) → ( ℤ < ℚ ↔ ℤ ⊊ ℚ ) ) |
| 87 |
15 12 86
|
mp2an |
⊢ ( ℤ < ℚ ↔ ℤ ⊊ ℚ ) |
| 88 |
83 87
|
mpbir |
⊢ ℤ < ℚ |
| 89 |
80 88
|
eqbrtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ) < ℚ |
| 90 |
89
|
a1i |
⊢ ( ⊤ → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ) < ℚ ) |
| 91 |
90
|
olcd |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ℤ ”〉 = ∅ ∨ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ) < ℚ ) ) |
| 92 |
13 78 91
|
chnccats1 |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ++ 〈“ ℚ ”〉 ) ∈ ( < Chain V ) ) |
| 93 |
11 92
|
eqeltrid |
⊢ ( ⊤ → 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ∈ ( < Chain V ) ) |
| 94 |
|
s5cli |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ∈ Word V |
| 95 |
|
lsw |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ∈ Word V → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) − 1 ) ) ) |
| 96 |
94 95
|
ax-mp |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) − 1 ) ) |
| 97 |
|
s5len |
⊢ ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) = 5 |
| 98 |
97
|
oveq1i |
⊢ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) − 1 ) = ( 5 − 1 ) |
| 99 |
|
5m1e4 |
⊢ ( 5 − 1 ) = 4 |
| 100 |
98 99
|
eqtri |
⊢ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) − 1 ) = 4 |
| 101 |
100
|
fveq2i |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) − 1 ) ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ‘ 4 ) |
| 102 |
96 101
|
eqtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ‘ 4 ) |
| 103 |
|
s4cli |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ∈ Word V |
| 104 |
|
s4len |
⊢ ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ”〉 ) = 4 |
| 105 |
11 103 104
|
cats1fvn |
⊢ ( ℚ ∈ V → ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ‘ 4 ) = ℚ ) |
| 106 |
12 105
|
ax-mp |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ‘ 4 ) = ℚ |
| 107 |
102 106
|
eqtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) = ℚ |
| 108 |
|
qssaa |
⊢ ℚ ⊆ 𝔸 |
| 109 |
|
qssre |
⊢ ℚ ⊆ ℝ |
| 110 |
108 109
|
ssini |
⊢ ℚ ⊆ ( 𝔸 ∩ ℝ ) |
| 111 |
|
2cn |
⊢ 2 ∈ ℂ |
| 112 |
|
sqrtcl |
⊢ ( 2 ∈ ℂ → ( √ ‘ 2 ) ∈ ℂ ) |
| 113 |
111 112
|
ax-mp |
⊢ ( √ ‘ 2 ) ∈ ℂ |
| 114 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
| 115 |
|
1z |
⊢ 1 ∈ ℤ |
| 116 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 117 |
|
plypow |
⊢ ( ( ℤ ⊆ ℂ ∧ 1 ∈ ℤ ∧ 2 ∈ ℕ0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∈ ( Poly ‘ ℤ ) ) |
| 118 |
114 115 116 117
|
mp3an |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∈ ( Poly ‘ ℤ ) |
| 119 |
118
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∈ ( Poly ‘ ℤ ) ) |
| 120 |
|
2z |
⊢ 2 ∈ ℤ |
| 121 |
114 120
|
pm3.2i |
⊢ ( ℤ ⊆ ℂ ∧ 2 ∈ ℤ ) |
| 122 |
|
plyconst |
⊢ ( ( ℤ ⊆ ℂ ∧ 2 ∈ ℤ ) → ( ℂ × { 2 } ) ∈ ( Poly ‘ ℤ ) ) |
| 123 |
121 122
|
mp1i |
⊢ ( ⊤ → ( ℂ × { 2 } ) ∈ ( Poly ‘ ℤ ) ) |
| 124 |
|
zaddcl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 + 𝑏 ) ∈ ℤ ) |
| 125 |
124
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 + 𝑏 ) ∈ ℤ ) |
| 126 |
|
zmulcl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 · 𝑏 ) ∈ ℤ ) |
| 127 |
126
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 · 𝑏 ) ∈ ℤ ) |
| 128 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 129 |
128
|
a1i |
⊢ ( ⊤ → - 1 ∈ ℤ ) |
| 130 |
119 123 125 127 129
|
plysub |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ ( Poly ‘ ℤ ) ) |
| 131 |
130
|
mptru |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ ( Poly ‘ ℤ ) |
| 132 |
|
0cn |
⊢ 0 ∈ ℂ |
| 133 |
|
ovex |
⊢ ( 𝑥 ↑ 2 ) ∈ V |
| 134 |
133
|
rgenw |
⊢ ∀ 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) ∈ V |
| 135 |
|
nfcv |
⊢ Ⅎ 𝑥 ℂ |
| 136 |
135
|
mptfnf |
⊢ ( ∀ 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) ∈ V ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) Fn ℂ ) |
| 137 |
134 136
|
mpbi |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) Fn ℂ |
| 138 |
|
2ex |
⊢ 2 ∈ V |
| 139 |
|
fconstmpt |
⊢ ( ℂ × { 2 } ) = ( 𝑎 ∈ ℂ ↦ 2 ) |
| 140 |
138 139
|
fnmpti |
⊢ ( ℂ × { 2 } ) Fn ℂ |
| 141 |
|
fnfvof |
⊢ ( ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) Fn ℂ ∧ ( ℂ × { 2 } ) Fn ℂ ) ∧ ( ℂ ∈ V ∧ 0 ∈ ℂ ) ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ 0 ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ 0 ) − ( ( ℂ × { 2 } ) ‘ 0 ) ) ) |
| 142 |
137 140 141
|
mpanl12 |
⊢ ( ( ℂ ∈ V ∧ 0 ∈ ℂ ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ 0 ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ 0 ) − ( ( ℂ × { 2 } ) ‘ 0 ) ) ) |
| 143 |
3 132 142
|
mp2an |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ 0 ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ 0 ) − ( ( ℂ × { 2 } ) ‘ 0 ) ) |
| 144 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 2 ) = ( 0 ↑ 2 ) ) |
| 145 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) |
| 146 |
|
ovex |
⊢ ( 0 ↑ 2 ) ∈ V |
| 147 |
144 145 146
|
fvmpt |
⊢ ( 0 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ 0 ) = ( 0 ↑ 2 ) ) |
| 148 |
132 147
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ 0 ) = ( 0 ↑ 2 ) |
| 149 |
|
sq0 |
⊢ ( 0 ↑ 2 ) = 0 |
| 150 |
148 149
|
eqtri |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ 0 ) = 0 |
| 151 |
138
|
fvconst2 |
⊢ ( 0 ∈ ℂ → ( ( ℂ × { 2 } ) ‘ 0 ) = 2 ) |
| 152 |
132 151
|
ax-mp |
⊢ ( ( ℂ × { 2 } ) ‘ 0 ) = 2 |
| 153 |
150 152
|
oveq12i |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ 0 ) − ( ( ℂ × { 2 } ) ‘ 0 ) ) = ( 0 − 2 ) |
| 154 |
143 153
|
eqtri |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ 0 ) = ( 0 − 2 ) |
| 155 |
|
df-neg |
⊢ - 2 = ( 0 − 2 ) |
| 156 |
154 155
|
eqtr4i |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ 0 ) = - 2 |
| 157 |
|
2re |
⊢ 2 ∈ ℝ |
| 158 |
157
|
renegcli |
⊢ - 2 ∈ ℝ |
| 159 |
|
2pos |
⊢ 0 < 2 |
| 160 |
|
lt0neg2 |
⊢ ( 2 ∈ ℝ → ( 0 < 2 ↔ - 2 < 0 ) ) |
| 161 |
157 160
|
ax-mp |
⊢ ( 0 < 2 ↔ - 2 < 0 ) |
| 162 |
159 161
|
mpbi |
⊢ - 2 < 0 |
| 163 |
|
ltne |
⊢ ( ( - 2 ∈ ℝ ∧ - 2 < 0 ) → 0 ≠ - 2 ) |
| 164 |
158 162 163
|
mp2an |
⊢ 0 ≠ - 2 |
| 165 |
164
|
necomi |
⊢ - 2 ≠ 0 |
| 166 |
156 165
|
eqnetri |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ 0 ) ≠ 0 |
| 167 |
132 166
|
pm3.2i |
⊢ ( 0 ∈ ℂ ∧ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ 0 ) ≠ 0 ) |
| 168 |
|
ne0p |
⊢ ( ( 0 ∈ ℂ ∧ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ 0 ) ≠ 0 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ≠ 0𝑝 ) |
| 169 |
|
nelsn |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ≠ 0𝑝 → ¬ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ { 0𝑝 } ) |
| 170 |
167 168 169
|
mp2b |
⊢ ¬ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ { 0𝑝 } |
| 171 |
131 170
|
pm3.2i |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ ( Poly ‘ ℤ ) ∧ ¬ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ { 0𝑝 } ) |
| 172 |
|
eldif |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ↔ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ ( Poly ‘ ℤ ) ∧ ¬ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ { 0𝑝 } ) ) |
| 173 |
171 172
|
mpbir |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) |
| 174 |
|
fconstmpt |
⊢ ( ℂ × { 2 } ) = ( 𝑏 ∈ ℂ ↦ 2 ) |
| 175 |
138 174
|
fnmpti |
⊢ ( ℂ × { 2 } ) Fn ℂ |
| 176 |
|
fnfvof |
⊢ ( ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) Fn ℂ ∧ ( ℂ × { 2 } ) Fn ℂ ) ∧ ( ℂ ∈ V ∧ ( √ ‘ 2 ) ∈ ℂ ) ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ ( √ ‘ 2 ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ ( √ ‘ 2 ) ) − ( ( ℂ × { 2 } ) ‘ ( √ ‘ 2 ) ) ) ) |
| 177 |
137 175 176
|
mpanl12 |
⊢ ( ( ℂ ∈ V ∧ ( √ ‘ 2 ) ∈ ℂ ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ ( √ ‘ 2 ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ ( √ ‘ 2 ) ) − ( ( ℂ × { 2 } ) ‘ ( √ ‘ 2 ) ) ) ) |
| 178 |
3 113 177
|
mp2an |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ ( √ ‘ 2 ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ ( √ ‘ 2 ) ) − ( ( ℂ × { 2 } ) ‘ ( √ ‘ 2 ) ) ) |
| 179 |
|
oveq1 |
⊢ ( 𝑥 = ( √ ‘ 2 ) → ( 𝑥 ↑ 2 ) = ( ( √ ‘ 2 ) ↑ 2 ) ) |
| 180 |
|
ovex |
⊢ ( ( √ ‘ 2 ) ↑ 2 ) ∈ V |
| 181 |
179 145 180
|
fvmpt |
⊢ ( ( √ ‘ 2 ) ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ ( √ ‘ 2 ) ) = ( ( √ ‘ 2 ) ↑ 2 ) ) |
| 182 |
113 181
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ ( √ ‘ 2 ) ) = ( ( √ ‘ 2 ) ↑ 2 ) |
| 183 |
|
sqrtth |
⊢ ( 2 ∈ ℂ → ( ( √ ‘ 2 ) ↑ 2 ) = 2 ) |
| 184 |
111 183
|
ax-mp |
⊢ ( ( √ ‘ 2 ) ↑ 2 ) = 2 |
| 185 |
182 184
|
eqtri |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ ( √ ‘ 2 ) ) = 2 |
| 186 |
138
|
fvconst2 |
⊢ ( ( √ ‘ 2 ) ∈ ℂ → ( ( ℂ × { 2 } ) ‘ ( √ ‘ 2 ) ) = 2 ) |
| 187 |
113 186
|
ax-mp |
⊢ ( ( ℂ × { 2 } ) ‘ ( √ ‘ 2 ) ) = 2 |
| 188 |
185 187
|
oveq12i |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ‘ ( √ ‘ 2 ) ) − ( ( ℂ × { 2 } ) ‘ ( √ ‘ 2 ) ) ) = ( 2 − 2 ) |
| 189 |
178 188
|
eqtri |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ ( √ ‘ 2 ) ) = ( 2 − 2 ) |
| 190 |
|
subid |
⊢ ( 2 ∈ ℂ → ( 2 − 2 ) = 0 ) |
| 191 |
111 190
|
ax-mp |
⊢ ( 2 − 2 ) = 0 |
| 192 |
189 191
|
eqtri |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ ( √ ‘ 2 ) ) = 0 |
| 193 |
|
fveq1 |
⊢ ( 𝑎 = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) → ( 𝑎 ‘ ( √ ‘ 2 ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ ( √ ‘ 2 ) ) ) |
| 194 |
193
|
eqeq1d |
⊢ ( 𝑎 = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) → ( ( 𝑎 ‘ ( √ ‘ 2 ) ) = 0 ↔ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ ( √ ‘ 2 ) ) = 0 ) ) |
| 195 |
194
|
rspcev |
⊢ ( ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ ( √ ‘ 2 ) ) = 0 ) → ∃ 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑎 ‘ ( √ ‘ 2 ) ) = 0 ) |
| 196 |
|
fveq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 ‘ ( √ ‘ 2 ) ) = ( 𝑥 ‘ ( √ ‘ 2 ) ) ) |
| 197 |
196
|
eqeq1d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 ‘ ( √ ‘ 2 ) ) = 0 ↔ ( 𝑥 ‘ ( √ ‘ 2 ) ) = 0 ) ) |
| 198 |
197
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑎 ‘ ( √ ‘ 2 ) ) = 0 ↔ ∃ 𝑥 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑥 ‘ ( √ ‘ 2 ) ) = 0 ) |
| 199 |
195 198
|
sylib |
⊢ ( ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 2 ) ) ∘f − ( ℂ × { 2 } ) ) ‘ ( √ ‘ 2 ) ) = 0 ) → ∃ 𝑥 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑥 ‘ ( √ ‘ 2 ) ) = 0 ) |
| 200 |
173 192 199
|
mp2an |
⊢ ∃ 𝑥 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑥 ‘ ( √ ‘ 2 ) ) = 0 |
| 201 |
113 200
|
pm3.2i |
⊢ ( ( √ ‘ 2 ) ∈ ℂ ∧ ∃ 𝑥 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑥 ‘ ( √ ‘ 2 ) ) = 0 ) |
| 202 |
|
elaa |
⊢ ( ( √ ‘ 2 ) ∈ 𝔸 ↔ ( ( √ ‘ 2 ) ∈ ℂ ∧ ∃ 𝑥 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑥 ‘ ( √ ‘ 2 ) ) = 0 ) ) |
| 203 |
201 202
|
mpbir |
⊢ ( √ ‘ 2 ) ∈ 𝔸 |
| 204 |
|
sqrt2re |
⊢ ( √ ‘ 2 ) ∈ ℝ |
| 205 |
203 204
|
elini |
⊢ ( √ ‘ 2 ) ∈ ( 𝔸 ∩ ℝ ) |
| 206 |
|
sqrt2irr |
⊢ ( √ ‘ 2 ) ∉ ℚ |
| 207 |
|
df-nel |
⊢ ( ( √ ‘ 2 ) ∉ ℚ ↔ ¬ ( √ ‘ 2 ) ∈ ℚ ) |
| 208 |
206 207
|
mpbi |
⊢ ¬ ( √ ‘ 2 ) ∈ ℚ |
| 209 |
205 208
|
pm3.2i |
⊢ ( ( √ ‘ 2 ) ∈ ( 𝔸 ∩ ℝ ) ∧ ¬ ( √ ‘ 2 ) ∈ ℚ ) |
| 210 |
|
ssnelpss |
⊢ ( ℚ ⊆ ( 𝔸 ∩ ℝ ) → ( ( ( √ ‘ 2 ) ∈ ( 𝔸 ∩ ℝ ) ∧ ¬ ( √ ‘ 2 ) ∈ ℚ ) → ℚ ⊊ ( 𝔸 ∩ ℝ ) ) ) |
| 211 |
110 209 210
|
mp2 |
⊢ ℚ ⊊ ( 𝔸 ∩ ℝ ) |
| 212 |
|
psseq1 |
⊢ ( 𝑥 = ℚ → ( 𝑥 ⊊ 𝑦 ↔ ℚ ⊊ 𝑦 ) ) |
| 213 |
|
psseq2 |
⊢ ( 𝑦 = ( 𝔸 ∩ ℝ ) → ( ℚ ⊊ 𝑦 ↔ ℚ ⊊ ( 𝔸 ∩ ℝ ) ) ) |
| 214 |
212 213 1
|
brabg |
⊢ ( ( ℚ ∈ V ∧ ( 𝔸 ∩ ℝ ) ∈ V ) → ( ℚ < ( 𝔸 ∩ ℝ ) ↔ ℚ ⊊ ( 𝔸 ∩ ℝ ) ) ) |
| 215 |
12 9 214
|
mp2an |
⊢ ( ℚ < ( 𝔸 ∩ ℝ ) ↔ ℚ ⊊ ( 𝔸 ∩ ℝ ) ) |
| 216 |
211 215
|
mpbir |
⊢ ℚ < ( 𝔸 ∩ ℝ ) |
| 217 |
107 216
|
eqbrtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) < ( 𝔸 ∩ ℝ ) |
| 218 |
217
|
a1i |
⊢ ( ⊤ → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) < ( 𝔸 ∩ ℝ ) ) |
| 219 |
218
|
olcd |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 = ∅ ∨ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ) < ( 𝔸 ∩ ℝ ) ) ) |
| 220 |
10 93 219
|
chnccats1 |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ”〉 ++ 〈“ ( 𝔸 ∩ ℝ ) ”〉 ) ∈ ( < Chain V ) ) |
| 221 |
8 220
|
eqeltrid |
⊢ ( ⊤ → 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ∈ ( < Chain V ) ) |
| 222 |
|
s6cli |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ∈ Word V |
| 223 |
|
lsw |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ∈ Word V → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) − 1 ) ) ) |
| 224 |
222 223
|
ax-mp |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) − 1 ) ) |
| 225 |
|
s6len |
⊢ ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) = 6 |
| 226 |
225
|
oveq1i |
⊢ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) − 1 ) = ( 6 − 1 ) |
| 227 |
|
6m1e5 |
⊢ ( 6 − 1 ) = 5 |
| 228 |
226 227
|
eqtri |
⊢ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) − 1 ) = 5 |
| 229 |
228
|
fveq2i |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) − 1 ) ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ‘ 5 ) |
| 230 |
224 229
|
eqtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ‘ 5 ) |
| 231 |
8 94 97
|
cats1fvn |
⊢ ( ( 𝔸 ∩ ℝ ) ∈ V → ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ‘ 5 ) = ( 𝔸 ∩ ℝ ) ) |
| 232 |
9 231
|
ax-mp |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ‘ 5 ) = ( 𝔸 ∩ ℝ ) |
| 233 |
230 232
|
eqtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) = ( 𝔸 ∩ ℝ ) |
| 234 |
|
inss2 |
⊢ ( 𝔸 ∩ ℝ ) ⊆ ℝ |
| 235 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 236 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 237 |
|
id |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) |
| 238 |
|
ovexd |
⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ V ) |
| 239 |
|
id |
⊢ ( 𝑎 = 𝑘 → 𝑎 = 𝑘 ) |
| 240 |
239
|
fveq2d |
⊢ ( 𝑎 = 𝑘 → ( ! ‘ 𝑎 ) = ( ! ‘ 𝑘 ) ) |
| 241 |
240
|
negeqd |
⊢ ( 𝑎 = 𝑘 → - ( ! ‘ 𝑎 ) = - ( ! ‘ 𝑘 ) ) |
| 242 |
241
|
oveq2d |
⊢ ( 𝑎 = 𝑘 → ( 2 ↑ - ( ! ‘ 𝑎 ) ) = ( 2 ↑ - ( ! ‘ 𝑘 ) ) ) |
| 243 |
|
eqid |
⊢ ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) = ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) |
| 244 |
242 243
|
fvmptg |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ V ) → ( ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) ‘ 𝑘 ) = ( 2 ↑ - ( ! ‘ 𝑘 ) ) ) |
| 245 |
237 238 244
|
syl2anc |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) ‘ 𝑘 ) = ( 2 ↑ - ( ! ‘ 𝑘 ) ) ) |
| 246 |
245
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) ‘ 𝑘 ) = ( 2 ↑ - ( ! ‘ 𝑘 ) ) ) |
| 247 |
157
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ ) |
| 248 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 249 |
248
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ≠ 0 ) |
| 250 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 251 |
250
|
faccld |
⊢ ( 𝑘 ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 252 |
|
nnz |
⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℤ ) |
| 253 |
|
znegcl |
⊢ ( ( ! ‘ 𝑘 ) ∈ ℤ → - ( ! ‘ 𝑘 ) ∈ ℤ ) |
| 254 |
251 252 253
|
3syl |
⊢ ( 𝑘 ∈ ℕ → - ( ! ‘ 𝑘 ) ∈ ℤ ) |
| 255 |
247 249 254
|
reexpclzd |
⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 256 |
255
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 257 |
|
eqid |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ↦ ( ( 2 ↑ - ( ! ‘ 1 ) ) · ( ( 1 / 2 ) ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ↦ ( ( 2 ↑ - ( ! ‘ 1 ) ) · ( ( 1 / 2 ) ↑ ( 𝑛 − 1 ) ) ) ) |
| 258 |
257 243
|
aaliou3lem3 |
⊢ ( 1 ∈ ℕ → ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) ) ∈ dom ⇝ ∧ Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) ‘ 𝑏 ) ∈ ℝ+ ∧ Σ 𝑏 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) ‘ 𝑏 ) ≤ ( 2 · ( 2 ↑ - ( ! ‘ 1 ) ) ) ) ) |
| 259 |
258
|
simp1d |
⊢ ( 1 ∈ ℕ → seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) ) ∈ dom ⇝ ) |
| 260 |
28 259
|
mp1i |
⊢ ( ⊤ → seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑎 ) ) ) ) ∈ dom ⇝ ) |
| 261 |
235 236 246 256 260
|
isumrecl |
⊢ ( ⊤ → Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 262 |
261
|
mptru |
⊢ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ℝ |
| 263 |
|
aaliou3 |
⊢ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∉ 𝔸 |
| 264 |
|
df-nel |
⊢ ( Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∉ 𝔸 ↔ ¬ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ 𝔸 ) |
| 265 |
263 264
|
mpbi |
⊢ ¬ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ 𝔸 |
| 266 |
|
elinel1 |
⊢ ( Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ( 𝔸 ∩ ℝ ) → Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ 𝔸 ) |
| 267 |
265 266
|
mto |
⊢ ¬ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ( 𝔸 ∩ ℝ ) |
| 268 |
262 267
|
pm3.2i |
⊢ ( Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ℝ ∧ ¬ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ( 𝔸 ∩ ℝ ) ) |
| 269 |
|
ssnelpss |
⊢ ( ( 𝔸 ∩ ℝ ) ⊆ ℝ → ( ( Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ℝ ∧ ¬ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ ( 𝔸 ∩ ℝ ) ) → ( 𝔸 ∩ ℝ ) ⊊ ℝ ) ) |
| 270 |
234 268 269
|
mp2 |
⊢ ( 𝔸 ∩ ℝ ) ⊊ ℝ |
| 271 |
|
psseq1 |
⊢ ( 𝑥 = ( 𝔸 ∩ ℝ ) → ( 𝑥 ⊊ 𝑦 ↔ ( 𝔸 ∩ ℝ ) ⊊ 𝑦 ) ) |
| 272 |
|
psseq2 |
⊢ ( 𝑦 = ℝ → ( ( 𝔸 ∩ ℝ ) ⊊ 𝑦 ↔ ( 𝔸 ∩ ℝ ) ⊊ ℝ ) ) |
| 273 |
271 272 1
|
brabg |
⊢ ( ( ( 𝔸 ∩ ℝ ) ∈ V ∧ ℝ ∈ V ) → ( ( 𝔸 ∩ ℝ ) < ℝ ↔ ( 𝔸 ∩ ℝ ) ⊊ ℝ ) ) |
| 274 |
9 6 273
|
mp2an |
⊢ ( ( 𝔸 ∩ ℝ ) < ℝ ↔ ( 𝔸 ∩ ℝ ) ⊊ ℝ ) |
| 275 |
270 274
|
mpbir |
⊢ ( 𝔸 ∩ ℝ ) < ℝ |
| 276 |
233 275
|
eqbrtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) < ℝ |
| 277 |
276
|
a1i |
⊢ ( ⊤ → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) < ℝ ) |
| 278 |
277
|
olcd |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 = ∅ ∨ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ) < ℝ ) ) |
| 279 |
7 221 278
|
chnccats1 |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ”〉 ++ 〈“ ℝ ”〉 ) ∈ ( < Chain V ) ) |
| 280 |
5 279
|
eqeltrid |
⊢ ( ⊤ → 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ∈ ( < Chain V ) ) |
| 281 |
|
s7cli |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ∈ Word V |
| 282 |
|
lsw |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ∈ Word V → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) − 1 ) ) ) |
| 283 |
281 282
|
ax-mp |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) − 1 ) ) |
| 284 |
|
s7len |
⊢ ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) = 7 |
| 285 |
284
|
oveq1i |
⊢ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) − 1 ) = ( 7 − 1 ) |
| 286 |
|
7m1e6 |
⊢ ( 7 − 1 ) = 6 |
| 287 |
285 286
|
eqtri |
⊢ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) − 1 ) = 6 |
| 288 |
287
|
fveq2i |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) − 1 ) ) = ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ‘ 6 ) |
| 289 |
5 222 225
|
cats1fvn |
⊢ ( ℝ ∈ V → ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ‘ 6 ) = ℝ ) |
| 290 |
6 289
|
ax-mp |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ‘ 6 ) = ℝ |
| 291 |
288 290
|
eqtri |
⊢ ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ‘ ( ( ♯ ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) − 1 ) ) = ℝ |
| 292 |
283 291
|
eqtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) = ℝ |
| 293 |
81
|
simpri |
⊢ ( ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ ) |
| 294 |
293
|
simpri |
⊢ ℝ ⊊ ℂ |
| 295 |
|
psseq1 |
⊢ ( 𝑥 = ℝ → ( 𝑥 ⊊ 𝑦 ↔ ℝ ⊊ 𝑦 ) ) |
| 296 |
|
psseq2 |
⊢ ( 𝑦 = ℂ → ( ℝ ⊊ 𝑦 ↔ ℝ ⊊ ℂ ) ) |
| 297 |
295 296 1
|
brabg |
⊢ ( ( ℝ ∈ V ∧ ℂ ∈ V ) → ( ℝ < ℂ ↔ ℝ ⊊ ℂ ) ) |
| 298 |
6 3 297
|
mp2an |
⊢ ( ℝ < ℂ ↔ ℝ ⊊ ℂ ) |
| 299 |
294 298
|
mpbir |
⊢ ℝ < ℂ |
| 300 |
292 299
|
eqbrtri |
⊢ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) < ℂ |
| 301 |
300
|
a1i |
⊢ ( ⊤ → ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) < ℂ ) |
| 302 |
301
|
olcd |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 = ∅ ∨ ( lastS ‘ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ) < ℂ ) ) |
| 303 |
4 280 302
|
chnccats1 |
⊢ ( ⊤ → ( 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ”〉 ++ 〈“ ℂ ”〉 ) ∈ ( < Chain V ) ) |
| 304 |
2 303
|
eqeltrid |
⊢ ( ⊤ → 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ℂ ”〉 ∈ ( < Chain V ) ) |
| 305 |
304
|
mptru |
⊢ 〈“ { 1 } ℕ ℕ0 ℤ ℚ ( 𝔸 ∩ ℝ ) ℝ ℂ ”〉 ∈ ( < Chain V ) |