Metamath Proof Explorer


Theorem nthruc

Description: The sequence NN , ZZ , QQ , RR , and CC forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ZZ but not NN , one-half belongs to QQ but not ZZ , the square root of 2 belongs to RR but not QQ , and finally that the imaginary number _i belongs to CC but not RR . See nthruz for a further refinement. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion nthruc ( ( ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ ) ∧ ( ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ ) )

Proof

Step Hyp Ref Expression
1 nnssz ℕ ⊆ ℤ
2 0z 0 ∈ ℤ
3 0nnn ¬ 0 ∈ ℕ
4 2 3 pm3.2i ( 0 ∈ ℤ ∧ ¬ 0 ∈ ℕ )
5 ssnelpss ( ℕ ⊆ ℤ → ( ( 0 ∈ ℤ ∧ ¬ 0 ∈ ℕ ) → ℕ ⊊ ℤ ) )
6 1 4 5 mp2 ℕ ⊊ ℤ
7 zssq ℤ ⊆ ℚ
8 1z 1 ∈ ℤ
9 2nn 2 ∈ ℕ
10 znq ( ( 1 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 1 / 2 ) ∈ ℚ )
11 8 9 10 mp2an ( 1 / 2 ) ∈ ℚ
12 halfnz ¬ ( 1 / 2 ) ∈ ℤ
13 11 12 pm3.2i ( ( 1 / 2 ) ∈ ℚ ∧ ¬ ( 1 / 2 ) ∈ ℤ )
14 ssnelpss ( ℤ ⊆ ℚ → ( ( ( 1 / 2 ) ∈ ℚ ∧ ¬ ( 1 / 2 ) ∈ ℤ ) → ℤ ⊊ ℚ ) )
15 7 13 14 mp2 ℤ ⊊ ℚ
16 6 15 pm3.2i ( ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ )
17 qssre ℚ ⊆ ℝ
18 sqrt2re ( √ ‘ 2 ) ∈ ℝ
19 sqrt2irr ( √ ‘ 2 ) ∉ ℚ
20 19 neli ¬ ( √ ‘ 2 ) ∈ ℚ
21 18 20 pm3.2i ( ( √ ‘ 2 ) ∈ ℝ ∧ ¬ ( √ ‘ 2 ) ∈ ℚ )
22 ssnelpss ( ℚ ⊆ ℝ → ( ( ( √ ‘ 2 ) ∈ ℝ ∧ ¬ ( √ ‘ 2 ) ∈ ℚ ) → ℚ ⊊ ℝ ) )
23 17 21 22 mp2 ℚ ⊊ ℝ
24 ax-resscn ℝ ⊆ ℂ
25 ax-icn i ∈ ℂ
26 inelr ¬ i ∈ ℝ
27 25 26 pm3.2i ( i ∈ ℂ ∧ ¬ i ∈ ℝ )
28 ssnelpss ( ℝ ⊆ ℂ → ( ( i ∈ ℂ ∧ ¬ i ∈ ℝ ) → ℝ ⊊ ℂ ) )
29 24 27 28 mp2 ℝ ⊊ ℂ
30 23 29 pm3.2i ( ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ )
31 16 30 pm3.2i ( ( ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ ) ∧ ( ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ ) )