Description: The sequence NN , ZZ , QQ , RR , and CC forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ZZ but not NN , one-half belongs to QQ but not ZZ , the square root of 2 belongs to RR but not QQ , and finally that the imaginary number _i belongs to CC but not RR . See nthruz for a further refinement. (Contributed by NM, 12-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | nthruc | ⊢ ( ( ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ ) ∧ ( ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssz | ⊢ ℕ ⊆ ℤ | |
2 | 0z | ⊢ 0 ∈ ℤ | |
3 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
4 | 2 3 | pm3.2i | ⊢ ( 0 ∈ ℤ ∧ ¬ 0 ∈ ℕ ) |
5 | ssnelpss | ⊢ ( ℕ ⊆ ℤ → ( ( 0 ∈ ℤ ∧ ¬ 0 ∈ ℕ ) → ℕ ⊊ ℤ ) ) | |
6 | 1 4 5 | mp2 | ⊢ ℕ ⊊ ℤ |
7 | zssq | ⊢ ℤ ⊆ ℚ | |
8 | 1z | ⊢ 1 ∈ ℤ | |
9 | 2nn | ⊢ 2 ∈ ℕ | |
10 | znq | ⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 1 / 2 ) ∈ ℚ ) | |
11 | 8 9 10 | mp2an | ⊢ ( 1 / 2 ) ∈ ℚ |
12 | halfnz | ⊢ ¬ ( 1 / 2 ) ∈ ℤ | |
13 | 11 12 | pm3.2i | ⊢ ( ( 1 / 2 ) ∈ ℚ ∧ ¬ ( 1 / 2 ) ∈ ℤ ) |
14 | ssnelpss | ⊢ ( ℤ ⊆ ℚ → ( ( ( 1 / 2 ) ∈ ℚ ∧ ¬ ( 1 / 2 ) ∈ ℤ ) → ℤ ⊊ ℚ ) ) | |
15 | 7 13 14 | mp2 | ⊢ ℤ ⊊ ℚ |
16 | 6 15 | pm3.2i | ⊢ ( ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ ) |
17 | qssre | ⊢ ℚ ⊆ ℝ | |
18 | sqrt2re | ⊢ ( √ ‘ 2 ) ∈ ℝ | |
19 | sqrt2irr | ⊢ ( √ ‘ 2 ) ∉ ℚ | |
20 | 19 | neli | ⊢ ¬ ( √ ‘ 2 ) ∈ ℚ |
21 | 18 20 | pm3.2i | ⊢ ( ( √ ‘ 2 ) ∈ ℝ ∧ ¬ ( √ ‘ 2 ) ∈ ℚ ) |
22 | ssnelpss | ⊢ ( ℚ ⊆ ℝ → ( ( ( √ ‘ 2 ) ∈ ℝ ∧ ¬ ( √ ‘ 2 ) ∈ ℚ ) → ℚ ⊊ ℝ ) ) | |
23 | 17 21 22 | mp2 | ⊢ ℚ ⊊ ℝ |
24 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
25 | ax-icn | ⊢ i ∈ ℂ | |
26 | inelr | ⊢ ¬ i ∈ ℝ | |
27 | 25 26 | pm3.2i | ⊢ ( i ∈ ℂ ∧ ¬ i ∈ ℝ ) |
28 | ssnelpss | ⊢ ( ℝ ⊆ ℂ → ( ( i ∈ ℂ ∧ ¬ i ∈ ℝ ) → ℝ ⊊ ℂ ) ) | |
29 | 24 27 28 | mp2 | ⊢ ℝ ⊊ ℂ |
30 | 23 29 | pm3.2i | ⊢ ( ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ ) |
31 | 16 30 | pm3.2i | ⊢ ( ( ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ ) ∧ ( ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ ) ) |