Step |
Hyp |
Ref |
Expression |
1 |
|
nnssz |
|- NN C_ ZZ |
2 |
|
0z |
|- 0 e. ZZ |
3 |
|
0nnn |
|- -. 0 e. NN |
4 |
2 3
|
pm3.2i |
|- ( 0 e. ZZ /\ -. 0 e. NN ) |
5 |
|
ssnelpss |
|- ( NN C_ ZZ -> ( ( 0 e. ZZ /\ -. 0 e. NN ) -> NN C. ZZ ) ) |
6 |
1 4 5
|
mp2 |
|- NN C. ZZ |
7 |
|
zssq |
|- ZZ C_ QQ |
8 |
|
1z |
|- 1 e. ZZ |
9 |
|
2nn |
|- 2 e. NN |
10 |
|
znq |
|- ( ( 1 e. ZZ /\ 2 e. NN ) -> ( 1 / 2 ) e. QQ ) |
11 |
8 9 10
|
mp2an |
|- ( 1 / 2 ) e. QQ |
12 |
|
halfnz |
|- -. ( 1 / 2 ) e. ZZ |
13 |
11 12
|
pm3.2i |
|- ( ( 1 / 2 ) e. QQ /\ -. ( 1 / 2 ) e. ZZ ) |
14 |
|
ssnelpss |
|- ( ZZ C_ QQ -> ( ( ( 1 / 2 ) e. QQ /\ -. ( 1 / 2 ) e. ZZ ) -> ZZ C. QQ ) ) |
15 |
7 13 14
|
mp2 |
|- ZZ C. QQ |
16 |
6 15
|
pm3.2i |
|- ( NN C. ZZ /\ ZZ C. QQ ) |
17 |
|
qssre |
|- QQ C_ RR |
18 |
|
sqrt2re |
|- ( sqrt ` 2 ) e. RR |
19 |
|
sqrt2irr |
|- ( sqrt ` 2 ) e/ QQ |
20 |
19
|
neli |
|- -. ( sqrt ` 2 ) e. QQ |
21 |
18 20
|
pm3.2i |
|- ( ( sqrt ` 2 ) e. RR /\ -. ( sqrt ` 2 ) e. QQ ) |
22 |
|
ssnelpss |
|- ( QQ C_ RR -> ( ( ( sqrt ` 2 ) e. RR /\ -. ( sqrt ` 2 ) e. QQ ) -> QQ C. RR ) ) |
23 |
17 21 22
|
mp2 |
|- QQ C. RR |
24 |
|
ax-resscn |
|- RR C_ CC |
25 |
|
ax-icn |
|- _i e. CC |
26 |
|
inelr |
|- -. _i e. RR |
27 |
25 26
|
pm3.2i |
|- ( _i e. CC /\ -. _i e. RR ) |
28 |
|
ssnelpss |
|- ( RR C_ CC -> ( ( _i e. CC /\ -. _i e. RR ) -> RR C. CC ) ) |
29 |
24 27 28
|
mp2 |
|- RR C. CC |
30 |
23 29
|
pm3.2i |
|- ( QQ C. RR /\ RR C. CC ) |
31 |
16 30
|
pm3.2i |
|- ( ( NN C. ZZ /\ ZZ C. QQ ) /\ ( QQ C. RR /\ RR C. CC ) ) |