Metamath Proof Explorer


Theorem nthruz

Description: The sequence NN , NN0 , and ZZ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to NN0 but not NN and minus one belongs to ZZ but not NN0 . This theorem refines the chain of proper subsets nthruc . (Contributed by NM, 9-May-2004)

Ref Expression
Assertion nthruz
|- ( NN C. NN0 /\ NN0 C. ZZ )

Proof

Step Hyp Ref Expression
1 nnssnn0
 |-  NN C_ NN0
2 0nn0
 |-  0 e. NN0
3 0nnn
 |-  -. 0 e. NN
4 2 3 pm3.2i
 |-  ( 0 e. NN0 /\ -. 0 e. NN )
5 ssnelpss
 |-  ( NN C_ NN0 -> ( ( 0 e. NN0 /\ -. 0 e. NN ) -> NN C. NN0 ) )
6 1 4 5 mp2
 |-  NN C. NN0
7 nn0ssz
 |-  NN0 C_ ZZ
8 neg1z
 |-  -u 1 e. ZZ
9 neg1lt0
 |-  -u 1 < 0
10 nn0nlt0
 |-  ( -u 1 e. NN0 -> -. -u 1 < 0 )
11 9 10 mt2
 |-  -. -u 1 e. NN0
12 8 11 pm3.2i
 |-  ( -u 1 e. ZZ /\ -. -u 1 e. NN0 )
13 ssnelpss
 |-  ( NN0 C_ ZZ -> ( ( -u 1 e. ZZ /\ -. -u 1 e. NN0 ) -> NN0 C. ZZ ) )
14 7 12 13 mp2
 |-  NN0 C. ZZ
15 6 14 pm3.2i
 |-  ( NN C. NN0 /\ NN0 C. ZZ )