Metamath Proof Explorer


Theorem nthruc

Description: The sequence NN , ZZ , QQ , RR , and CC forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ZZ but not NN , one-half belongs to QQ but not ZZ , the square root of 2 belongs to RR but not QQ , and finally that the imaginary number _i belongs to CC but not RR . See nthruz for a further refinement. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion nthruc

Proof

Step Hyp Ref Expression
1 nnssz
2 0z 0
3 0nnn ¬ 0
4 2 3 pm3.2i 0 ¬ 0
5 ssnelpss 0 ¬ 0
6 1 4 5 mp2
7 zssq
8 1z 1
9 2nn 2
10 znq 1 2 1 2
11 8 9 10 mp2an 1 2
12 halfnz ¬ 1 2
13 11 12 pm3.2i 1 2 ¬ 1 2
14 ssnelpss 1 2 ¬ 1 2
15 7 13 14 mp2
16 6 15 pm3.2i
17 qssre
18 sqrt2re 2
19 sqrt2irr 2
20 19 neli ¬ 2
21 18 20 pm3.2i 2 ¬ 2
22 ssnelpss 2 ¬ 2
23 17 21 22 mp2
24 ax-resscn
25 ax-icn i
26 inelr ¬ i
27 25 26 pm3.2i i ¬ i
28 ssnelpss i ¬ i
29 24 27 28 mp2
30 23 29 pm3.2i
31 16 30 pm3.2i