Metamath Proof Explorer


Theorem chner

Description: Any two elements are equivalent in a chain constructed on an equivalence relation. (Contributed by Ender Ting, 29-Jan-2026)

Ref Expression
Hypotheses chner.1 φ ˙ Er A
chner.2 φ C Chain A ˙
chner.3 φ J 0 ..^ C
chner.4 φ I 0 ..^ C
Assertion chner φ C I ˙ C J

Proof

Step Hyp Ref Expression
1 chner.1 φ ˙ Er A
2 chner.2 φ C Chain A ˙
3 chner.3 φ J 0 ..^ C
4 chner.4 φ I 0 ..^ C
5 1 2 3 chnerlem2 φ I 0 ..^ J C I ˙ C J
6 1 adantr φ J 0 ..^ I ˙ Er A
7 1 2 4 chnerlem2 φ J 0 ..^ I C J ˙ C I
8 6 7 ersym φ J 0 ..^ I C I ˙ C J
9 fveq2 I = J C I = C J
10 9 adantl φ I = J C I = C J
11 1 adantr φ I = J ˙ Er A
12 2 chnwrd φ C Word A
13 wrdsymbcl C Word A J 0 ..^ C C J A
14 12 3 13 syl2anc φ C J A
15 14 adantr φ I = J C J A
16 11 15 erref φ I = J C J ˙ C J
17 10 16 eqbrtrd φ I = J C I ˙ C J
18 1 2 3 4 chnerlem3 φ I 0 ..^ J J 0 ..^ I I = J
19 5 8 17 18 mpjao3dan φ C I ˙ C J