| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chner.1 |
⊢ ( 𝜑 → ∼ Er 𝐴 ) |
| 2 |
|
chner.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( ∼ Chain 𝐴 ) ) |
| 3 |
|
chner.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 4 |
|
chner.4 |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 5 |
1 2 3
|
chnerlem2 |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝐶 ‘ 𝐼 ) ∼ ( 𝐶 ‘ 𝐽 ) ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝐼 ) ) → ∼ Er 𝐴 ) |
| 7 |
1 2 4
|
chnerlem2 |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝐶 ‘ 𝐽 ) ∼ ( 𝐶 ‘ 𝐼 ) ) |
| 8 |
6 7
|
ersym |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝐶 ‘ 𝐼 ) ∼ ( 𝐶 ‘ 𝐽 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝐼 = 𝐽 → ( 𝐶 ‘ 𝐼 ) = ( 𝐶 ‘ 𝐽 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝐶 ‘ 𝐼 ) = ( 𝐶 ‘ 𝐽 ) ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ∼ Er 𝐴 ) |
| 12 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝐶 ∈ Word 𝐴 ) |
| 13 |
|
wrdsymbcl |
⊢ ( ( 𝐶 ∈ Word 𝐴 ∧ 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) → ( 𝐶 ‘ 𝐽 ) ∈ 𝐴 ) |
| 14 |
12 3 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐽 ) ∈ 𝐴 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝐶 ‘ 𝐽 ) ∈ 𝐴 ) |
| 16 |
11 15
|
erref |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝐶 ‘ 𝐽 ) ∼ ( 𝐶 ‘ 𝐽 ) ) |
| 17 |
10 16
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝐶 ‘ 𝐼 ) ∼ ( 𝐶 ‘ 𝐽 ) ) |
| 18 |
1 2 3 4
|
chnerlem3 |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 0 ..^ 𝐽 ) ∨ 𝐽 ∈ ( 0 ..^ 𝐼 ) ∨ 𝐼 = 𝐽 ) ) |
| 19 |
5 8 17 18
|
mpjao3dan |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐼 ) ∼ ( 𝐶 ‘ 𝐽 ) ) |