Metamath Proof Explorer


Theorem chner

Description: Any two elements are equivalent in a chain constructed on an equivalence relation. (Contributed by Ender Ting, 29-Jan-2026)

Ref Expression
Hypotheses chner.1 ( 𝜑 Er 𝐴 )
chner.2 ( 𝜑𝐶 ∈ ( Chain 𝐴 ) )
chner.3 ( 𝜑𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
chner.4 ( 𝜑𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
Assertion chner ( 𝜑 → ( 𝐶𝐼 ) ( 𝐶𝐽 ) )

Proof

Step Hyp Ref Expression
1 chner.1 ( 𝜑 Er 𝐴 )
2 chner.2 ( 𝜑𝐶 ∈ ( Chain 𝐴 ) )
3 chner.3 ( 𝜑𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
4 chner.4 ( 𝜑𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) )
5 1 2 3 chnerlem2 ( ( 𝜑𝐼 ∈ ( 0 ..^ 𝐽 ) ) → ( 𝐶𝐼 ) ( 𝐶𝐽 ) )
6 1 adantr ( ( 𝜑𝐽 ∈ ( 0 ..^ 𝐼 ) ) → Er 𝐴 )
7 1 2 4 chnerlem2 ( ( 𝜑𝐽 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝐶𝐽 ) ( 𝐶𝐼 ) )
8 6 7 ersym ( ( 𝜑𝐽 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝐶𝐼 ) ( 𝐶𝐽 ) )
9 fveq2 ( 𝐼 = 𝐽 → ( 𝐶𝐼 ) = ( 𝐶𝐽 ) )
10 9 adantl ( ( 𝜑𝐼 = 𝐽 ) → ( 𝐶𝐼 ) = ( 𝐶𝐽 ) )
11 1 adantr ( ( 𝜑𝐼 = 𝐽 ) → Er 𝐴 )
12 2 chnwrd ( 𝜑𝐶 ∈ Word 𝐴 )
13 wrdsymbcl ( ( 𝐶 ∈ Word 𝐴𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) → ( 𝐶𝐽 ) ∈ 𝐴 )
14 12 3 13 syl2anc ( 𝜑 → ( 𝐶𝐽 ) ∈ 𝐴 )
15 14 adantr ( ( 𝜑𝐼 = 𝐽 ) → ( 𝐶𝐽 ) ∈ 𝐴 )
16 11 15 erref ( ( 𝜑𝐼 = 𝐽 ) → ( 𝐶𝐽 ) ( 𝐶𝐽 ) )
17 10 16 eqbrtrd ( ( 𝜑𝐼 = 𝐽 ) → ( 𝐶𝐼 ) ( 𝐶𝐽 ) )
18 1 2 3 4 chnerlem3 ( 𝜑 → ( 𝐼 ∈ ( 0 ..^ 𝐽 ) ∨ 𝐽 ∈ ( 0 ..^ 𝐼 ) ∨ 𝐼 = 𝐽 ) )
19 5 8 17 18 mpjao3dan ( 𝜑 → ( 𝐶𝐼 ) ( 𝐶𝐽 ) )