| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chner.1 |
⊢ ( 𝜑 → ∼ Er 𝐴 ) |
| 2 |
|
chner.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( ∼ Chain 𝐴 ) ) |
| 3 |
|
chner.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 4 |
|
chner.4 |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 5 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → 𝐼 ∈ ℤ ) |
| 6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
| 7 |
6
|
zred |
⊢ ( 𝜑 → 𝐼 ∈ ℝ ) |
| 8 |
|
elfzoelz |
⊢ ( 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → 𝐽 ∈ ℤ ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
| 10 |
9
|
zred |
⊢ ( 𝜑 → 𝐽 ∈ ℝ ) |
| 11 |
|
lttri4 |
⊢ ( ( 𝐼 ∈ ℝ ∧ 𝐽 ∈ ℝ ) → ( 𝐼 < 𝐽 ∨ 𝐼 = 𝐽 ∨ 𝐽 < 𝐼 ) ) |
| 12 |
7 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 < 𝐽 ∨ 𝐼 = 𝐽 ∨ 𝐽 < 𝐼 ) ) |
| 13 |
|
3orcomb |
⊢ ( ( 𝐼 < 𝐽 ∨ 𝐼 = 𝐽 ∨ 𝐽 < 𝐼 ) ↔ ( 𝐼 < 𝐽 ∨ 𝐽 < 𝐼 ∨ 𝐼 = 𝐽 ) ) |
| 14 |
12 13
|
sylib |
⊢ ( 𝜑 → ( 𝐼 < 𝐽 ∨ 𝐽 < 𝐼 ∨ 𝐼 = 𝐽 ) ) |
| 15 |
|
elfzonn0 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → 𝐼 ∈ ℕ0 ) |
| 16 |
4 15
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ℕ0 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 < 𝐽 ) → 𝐼 ∈ ℕ0 ) |
| 18 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 < 𝐽 ) → 𝐽 ∈ ℤ ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 < 𝐽 ) → 𝐼 < 𝐽 ) |
| 20 |
17 18 19
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐼 < 𝐽 ) → ( 𝐼 ∈ ℕ0 ∧ 𝐽 ∈ ℤ ∧ 𝐼 < 𝐽 ) ) |
| 21 |
|
elfzo0z |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐽 ) ↔ ( 𝐼 ∈ ℕ0 ∧ 𝐽 ∈ ℤ ∧ 𝐼 < 𝐽 ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐼 < 𝐽 ) → 𝐼 ∈ ( 0 ..^ 𝐽 ) ) |
| 23 |
22
|
ex |
⊢ ( 𝜑 → ( 𝐼 < 𝐽 → 𝐼 ∈ ( 0 ..^ 𝐽 ) ) ) |
| 24 |
|
elfzonn0 |
⊢ ( 𝐽 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) → 𝐽 ∈ ℕ0 ) |
| 25 |
3 24
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 < 𝐼 ) → 𝐽 ∈ ℕ0 ) |
| 27 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 < 𝐼 ) → 𝐼 ∈ ℤ ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐽 < 𝐼 ) → 𝐽 < 𝐼 ) |
| 29 |
26 27 28
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐽 < 𝐼 ) → ( 𝐽 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ∧ 𝐽 < 𝐼 ) ) |
| 30 |
|
elfzo0z |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝐼 ) ↔ ( 𝐽 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ∧ 𝐽 < 𝐼 ) ) |
| 31 |
29 30
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐽 < 𝐼 ) → 𝐽 ∈ ( 0 ..^ 𝐼 ) ) |
| 32 |
31
|
ex |
⊢ ( 𝜑 → ( 𝐽 < 𝐼 → 𝐽 ∈ ( 0 ..^ 𝐼 ) ) ) |
| 33 |
|
idd |
⊢ ( 𝜑 → ( 𝐼 = 𝐽 → 𝐼 = 𝐽 ) ) |
| 34 |
23 32 33
|
3orim123d |
⊢ ( 𝜑 → ( ( 𝐼 < 𝐽 ∨ 𝐽 < 𝐼 ∨ 𝐼 = 𝐽 ) → ( 𝐼 ∈ ( 0 ..^ 𝐽 ) ∨ 𝐽 ∈ ( 0 ..^ 𝐼 ) ∨ 𝐼 = 𝐽 ) ) ) |
| 35 |
14 34
|
mpd |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 0 ..^ 𝐽 ) ∨ 𝐽 ∈ ( 0 ..^ 𝐼 ) ∨ 𝐼 = 𝐽 ) ) |