| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chner.1 |
|- ( ph -> .~ Er A ) |
| 2 |
|
chner.2 |
|- ( ph -> C e. ( .~ Chain A ) ) |
| 3 |
|
chner.3 |
|- ( ph -> J e. ( 0 ..^ ( # ` C ) ) ) |
| 4 |
|
chner.4 |
|- ( ph -> I e. ( 0 ..^ ( # ` C ) ) ) |
| 5 |
|
elfzoelz |
|- ( I e. ( 0 ..^ ( # ` C ) ) -> I e. ZZ ) |
| 6 |
4 5
|
syl |
|- ( ph -> I e. ZZ ) |
| 7 |
6
|
zred |
|- ( ph -> I e. RR ) |
| 8 |
|
elfzoelz |
|- ( J e. ( 0 ..^ ( # ` C ) ) -> J e. ZZ ) |
| 9 |
3 8
|
syl |
|- ( ph -> J e. ZZ ) |
| 10 |
9
|
zred |
|- ( ph -> J e. RR ) |
| 11 |
|
lttri4 |
|- ( ( I e. RR /\ J e. RR ) -> ( I < J \/ I = J \/ J < I ) ) |
| 12 |
7 10 11
|
syl2anc |
|- ( ph -> ( I < J \/ I = J \/ J < I ) ) |
| 13 |
|
3orcomb |
|- ( ( I < J \/ I = J \/ J < I ) <-> ( I < J \/ J < I \/ I = J ) ) |
| 14 |
12 13
|
sylib |
|- ( ph -> ( I < J \/ J < I \/ I = J ) ) |
| 15 |
|
elfzonn0 |
|- ( I e. ( 0 ..^ ( # ` C ) ) -> I e. NN0 ) |
| 16 |
4 15
|
syl |
|- ( ph -> I e. NN0 ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ I < J ) -> I e. NN0 ) |
| 18 |
9
|
adantr |
|- ( ( ph /\ I < J ) -> J e. ZZ ) |
| 19 |
|
simpr |
|- ( ( ph /\ I < J ) -> I < J ) |
| 20 |
17 18 19
|
3jca |
|- ( ( ph /\ I < J ) -> ( I e. NN0 /\ J e. ZZ /\ I < J ) ) |
| 21 |
|
elfzo0z |
|- ( I e. ( 0 ..^ J ) <-> ( I e. NN0 /\ J e. ZZ /\ I < J ) ) |
| 22 |
20 21
|
sylibr |
|- ( ( ph /\ I < J ) -> I e. ( 0 ..^ J ) ) |
| 23 |
22
|
ex |
|- ( ph -> ( I < J -> I e. ( 0 ..^ J ) ) ) |
| 24 |
|
elfzonn0 |
|- ( J e. ( 0 ..^ ( # ` C ) ) -> J e. NN0 ) |
| 25 |
3 24
|
syl |
|- ( ph -> J e. NN0 ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ J < I ) -> J e. NN0 ) |
| 27 |
6
|
adantr |
|- ( ( ph /\ J < I ) -> I e. ZZ ) |
| 28 |
|
simpr |
|- ( ( ph /\ J < I ) -> J < I ) |
| 29 |
26 27 28
|
3jca |
|- ( ( ph /\ J < I ) -> ( J e. NN0 /\ I e. ZZ /\ J < I ) ) |
| 30 |
|
elfzo0z |
|- ( J e. ( 0 ..^ I ) <-> ( J e. NN0 /\ I e. ZZ /\ J < I ) ) |
| 31 |
29 30
|
sylibr |
|- ( ( ph /\ J < I ) -> J e. ( 0 ..^ I ) ) |
| 32 |
31
|
ex |
|- ( ph -> ( J < I -> J e. ( 0 ..^ I ) ) ) |
| 33 |
|
idd |
|- ( ph -> ( I = J -> I = J ) ) |
| 34 |
23 32 33
|
3orim123d |
|- ( ph -> ( ( I < J \/ J < I \/ I = J ) -> ( I e. ( 0 ..^ J ) \/ J e. ( 0 ..^ I ) \/ I = J ) ) ) |
| 35 |
14 34
|
mpd |
|- ( ph -> ( I e. ( 0 ..^ J ) \/ J e. ( 0 ..^ I ) \/ I = J ) ) |