Metamath Proof Explorer


Theorem chnerlem2

Description: Lemma for chner where the I-th element comes before the J-th. (Contributed by Ender Ting, 29-Jan-2026)

Ref Expression
Hypotheses chner.1 φ ˙ Er A
chner.2 φ C Chain A ˙
chner.3 φ J 0 ..^ C
Assertion chnerlem2 φ I 0 ..^ J C I ˙ C J

Proof

Step Hyp Ref Expression
1 chner.1 φ ˙ Er A
2 chner.2 φ C Chain A ˙
3 chner.3 φ J 0 ..^ C
4 1 adantr φ I 0 ..^ J ˙ Er A
5 2 adantr φ I 0 ..^ J C Chain A ˙
6 3 adantr φ I 0 ..^ J J 0 ..^ C
7 fzofzp1 J 0 ..^ C J + 1 0 C
8 6 7 syl φ I 0 ..^ J J + 1 0 C
9 5 8 pfxchn φ I 0 ..^ J C prefix J + 1 Chain A ˙
10 simpl φ I 0 ..^ J φ
11 animorrl φ I 0 ..^ J I 0 ..^ J I = J
12 elfzonn0 J 0 ..^ C J 0
13 nn0uz 0 = 0
14 13 eleq2i J 0 J 0
15 14 biimpi J 0 J 0
16 3 12 15 3syl φ J 0
17 16 adantr φ I 0 ..^ J J 0
18 fzosplitsni J 0 I 0 ..^ J + 1 I 0 ..^ J I = J
19 17 18 syl φ I 0 ..^ J I 0 ..^ J + 1 I 0 ..^ J I = J
20 11 19 mpbird φ I 0 ..^ J I 0 ..^ J + 1
21 10 20 jca φ I 0 ..^ J φ I 0 ..^ J + 1
22 simpr φ I 0 ..^ J + 1 I 0 ..^ J + 1
23 2 chnwrd φ C Word A
24 23 adantr φ I 0 ..^ J + 1 C Word A
25 3 7 syl φ J + 1 0 C
26 25 adantr φ I 0 ..^ J + 1 J + 1 0 C
27 pfxlen C Word A J + 1 0 C C prefix J + 1 = J + 1
28 24 26 27 syl2anc φ I 0 ..^ J + 1 C prefix J + 1 = J + 1
29 28 oveq2d φ I 0 ..^ J + 1 0 ..^ C prefix J + 1 = 0 ..^ J + 1
30 22 29 eleqtrrd φ I 0 ..^ J + 1 I 0 ..^ C prefix J + 1
31 21 30 syl φ I 0 ..^ J I 0 ..^ C prefix J + 1
32 4 9 31 chnerlem1 φ I 0 ..^ J C prefix J + 1 I ˙ lastS C prefix J + 1
33 23 adantr φ I 0 ..^ J C Word A
34 pfxfv C Word A J + 1 0 C I 0 ..^ J + 1 C prefix J + 1 I = C I
35 33 8 20 34 syl3anc φ I 0 ..^ J C prefix J + 1 I = C I
36 lencl C Word A C 0
37 23 36 syl φ C 0
38 fz0add1fz1 C 0 J 0 ..^ C J + 1 1 C
39 37 3 38 syl2anc φ J + 1 1 C
40 39 adantr φ I 0 ..^ J J + 1 1 C
41 pfxfvlsw C Word A J + 1 1 C lastS C prefix J + 1 = C J + 1 - 1
42 33 40 41 syl2anc φ I 0 ..^ J lastS C prefix J + 1 = C J + 1 - 1
43 elfzoel2 I 0 ..^ J J
44 43 adantl φ I 0 ..^ J J
45 44 zcnd φ I 0 ..^ J J
46 1cnd φ I 0 ..^ J 1
47 45 46 pncand φ I 0 ..^ J J + 1 - 1 = J
48 47 fveq2d φ I 0 ..^ J C J + 1 - 1 = C J
49 42 48 eqtrd φ I 0 ..^ J lastS C prefix J + 1 = C J
50 32 35 49 3brtr3d φ I 0 ..^ J C I ˙ C J