| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnsubseq.1 |
⊢ ( 𝜑 → 𝑊 ∈ ( < Chain 𝐴 ) ) |
| 2 |
|
chnsubseq.2 |
⊢ ( 𝜑 → 𝐼 ∈ ( < Chain ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 3 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 4 |
|
wrdf |
⊢ ( 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 6 |
5
|
frnd |
⊢ ( 𝜑 → ran 𝐼 ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 |
1
|
chnwrd |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐴 ) |
| 8 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐴 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 10 |
6 9
|
sseqtrrd |
⊢ ( 𝜑 → ran 𝐼 ⊆ dom 𝑊 ) |
| 11 |
|
dmcosseq |
⊢ ( ran 𝐼 ⊆ dom 𝑊 → dom ( 𝑊 ∘ 𝐼 ) = dom 𝐼 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → dom ( 𝑊 ∘ 𝐼 ) = dom 𝐼 ) |
| 13 |
1 2
|
chnsubseqword |
⊢ ( 𝜑 → ( 𝑊 ∘ 𝐼 ) ∈ Word 𝐴 ) |
| 14 |
|
wrddm |
⊢ ( ( 𝑊 ∘ 𝐼 ) ∈ Word 𝐴 → dom ( 𝑊 ∘ 𝐼 ) = ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → dom ( 𝑊 ∘ 𝐼 ) = ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ) |
| 16 |
|
wrddm |
⊢ ( 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → dom 𝐼 = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 17 |
3 16
|
syl |
⊢ ( 𝜑 → dom 𝐼 = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 18 |
12 15 17
|
3eqtr3d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 19 |
|
0z |
⊢ 0 ∈ ℤ |
| 20 |
|
lencl |
⊢ ( ( 𝑊 ∘ 𝐼 ) ∈ Word 𝐴 → ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ∈ ℕ0 ) |
| 21 |
13 20
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ∈ ℕ0 ) |
| 22 |
21
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ∈ ℤ ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → 0 < ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) |
| 24 |
|
fzoopth |
⊢ ( ( 0 ∈ ℤ ∧ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ∈ ℤ ∧ 0 < ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ( 0 = 0 ∧ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) ) ) |
| 25 |
19 22 23 24
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 0 < ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ( 0 = 0 ∧ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) ) ) |
| 26 |
|
eqid |
⊢ 0 = 0 |
| 27 |
26
|
biantrur |
⊢ ( ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ↔ ( 0 = 0 ∧ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) ) |
| 28 |
25 27
|
bitr4di |
⊢ ( ( 𝜑 ∧ 0 < ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) |
| 30 |
29
|
oveq2d |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( 0 ..^ 0 ) = ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ) |
| 31 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
| 32 |
30 31
|
eqtr3di |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ∅ ) |
| 33 |
32
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ∅ = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) ) |
| 34 |
|
eqcom |
⊢ ( ∅ = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) = ∅ ) |
| 35 |
33 34
|
bitrdi |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) = ∅ ) ) |
| 36 |
|
0zd |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → 0 ∈ ℤ ) |
| 37 |
|
lencl |
⊢ ( 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 38 |
3 37
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 39 |
38
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
| 41 |
|
fzon |
⊢ ( ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝐼 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐼 ) ≤ 0 ↔ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) = ∅ ) ) |
| 42 |
36 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( ♯ ‘ 𝐼 ) ≤ 0 ↔ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) = ∅ ) ) |
| 43 |
|
nn0le0eq0 |
⊢ ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐼 ) ≤ 0 ↔ ( ♯ ‘ 𝐼 ) = 0 ) ) |
| 44 |
43
|
biimpa |
⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐼 ) ≤ 0 ) → ( ♯ ‘ 𝐼 ) = 0 ) |
| 45 |
38 44
|
sylan |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐼 ) ≤ 0 ) → ( ♯ ‘ 𝐼 ) = 0 ) |
| 46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ∧ ( ♯ ‘ 𝐼 ) ≤ 0 ) → ( ♯ ‘ 𝐼 ) = 0 ) |
| 47 |
|
id |
⊢ ( ( ♯ ‘ 𝐼 ) = 0 → ( ♯ ‘ 𝐼 ) = 0 ) |
| 48 |
|
0le0 |
⊢ 0 ≤ 0 |
| 49 |
47 48
|
eqbrtrdi |
⊢ ( ( ♯ ‘ 𝐼 ) = 0 → ( ♯ ‘ 𝐼 ) ≤ 0 ) |
| 50 |
49
|
adantl |
⊢ ( ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ∧ ( ♯ ‘ 𝐼 ) = 0 ) → ( ♯ ‘ 𝐼 ) ≤ 0 ) |
| 51 |
46 50
|
impbida |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( ♯ ‘ 𝐼 ) ≤ 0 ↔ ( ♯ ‘ 𝐼 ) = 0 ) ) |
| 52 |
|
eqcom |
⊢ ( ( ♯ ‘ 𝐼 ) = 0 ↔ 0 = ( ♯ ‘ 𝐼 ) ) |
| 53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( ♯ ‘ 𝐼 ) = 0 ↔ 0 = ( ♯ ‘ 𝐼 ) ) ) |
| 54 |
29
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( 0 = ( ♯ ‘ 𝐼 ) ↔ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) ) |
| 55 |
51 53 54
|
3bitrd |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( ♯ ‘ 𝐼 ) ≤ 0 ↔ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) ) |
| 56 |
35 42 55
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → ( ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) ) |
| 57 |
21
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) |
| 58 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 59 |
21
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ∈ ℝ ) |
| 60 |
58 59
|
leloed |
⊢ ( 𝜑 → ( 0 ≤ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ↔ ( 0 < ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ∨ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ) ) |
| 61 |
57 60
|
mpbid |
⊢ ( 𝜑 → ( 0 < ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ∨ 0 = ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ) |
| 62 |
28 56 61
|
mpjaodan |
⊢ ( 𝜑 → ( ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) ) |
| 63 |
18 62
|
mpbid |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) |