| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnsubseq.1 |
|- ( ph -> W e. ( .< Chain A ) ) |
| 2 |
|
chnsubseq.2 |
|- ( ph -> I e. ( < Chain ( 0 ..^ ( # ` W ) ) ) ) |
| 3 |
2
|
chnwrd |
|- ( ph -> I e. Word ( 0 ..^ ( # ` W ) ) ) |
| 4 |
|
wrdf |
|- ( I e. Word ( 0 ..^ ( # ` W ) ) -> I : ( 0 ..^ ( # ` I ) ) --> ( 0 ..^ ( # ` W ) ) ) |
| 5 |
3 4
|
syl |
|- ( ph -> I : ( 0 ..^ ( # ` I ) ) --> ( 0 ..^ ( # ` W ) ) ) |
| 6 |
5
|
frnd |
|- ( ph -> ran I C_ ( 0 ..^ ( # ` W ) ) ) |
| 7 |
1
|
chnwrd |
|- ( ph -> W e. Word A ) |
| 8 |
|
wrddm |
|- ( W e. Word A -> dom W = ( 0 ..^ ( # ` W ) ) ) |
| 9 |
7 8
|
syl |
|- ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) |
| 10 |
6 9
|
sseqtrrd |
|- ( ph -> ran I C_ dom W ) |
| 11 |
|
dmcosseq |
|- ( ran I C_ dom W -> dom ( W o. I ) = dom I ) |
| 12 |
10 11
|
syl |
|- ( ph -> dom ( W o. I ) = dom I ) |
| 13 |
1 2
|
chnsubseqword |
|- ( ph -> ( W o. I ) e. Word A ) |
| 14 |
|
wrddm |
|- ( ( W o. I ) e. Word A -> dom ( W o. I ) = ( 0 ..^ ( # ` ( W o. I ) ) ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> dom ( W o. I ) = ( 0 ..^ ( # ` ( W o. I ) ) ) ) |
| 16 |
|
wrddm |
|- ( I e. Word ( 0 ..^ ( # ` W ) ) -> dom I = ( 0 ..^ ( # ` I ) ) ) |
| 17 |
3 16
|
syl |
|- ( ph -> dom I = ( 0 ..^ ( # ` I ) ) ) |
| 18 |
12 15 17
|
3eqtr3d |
|- ( ph -> ( 0 ..^ ( # ` ( W o. I ) ) ) = ( 0 ..^ ( # ` I ) ) ) |
| 19 |
|
0z |
|- 0 e. ZZ |
| 20 |
|
lencl |
|- ( ( W o. I ) e. Word A -> ( # ` ( W o. I ) ) e. NN0 ) |
| 21 |
13 20
|
syl |
|- ( ph -> ( # ` ( W o. I ) ) e. NN0 ) |
| 22 |
21
|
nn0zd |
|- ( ph -> ( # ` ( W o. I ) ) e. ZZ ) |
| 23 |
|
simpr |
|- ( ( ph /\ 0 < ( # ` ( W o. I ) ) ) -> 0 < ( # ` ( W o. I ) ) ) |
| 24 |
|
fzoopth |
|- ( ( 0 e. ZZ /\ ( # ` ( W o. I ) ) e. ZZ /\ 0 < ( # ` ( W o. I ) ) ) -> ( ( 0 ..^ ( # ` ( W o. I ) ) ) = ( 0 ..^ ( # ` I ) ) <-> ( 0 = 0 /\ ( # ` ( W o. I ) ) = ( # ` I ) ) ) ) |
| 25 |
19 22 23 24
|
mp3an2ani |
|- ( ( ph /\ 0 < ( # ` ( W o. I ) ) ) -> ( ( 0 ..^ ( # ` ( W o. I ) ) ) = ( 0 ..^ ( # ` I ) ) <-> ( 0 = 0 /\ ( # ` ( W o. I ) ) = ( # ` I ) ) ) ) |
| 26 |
|
eqid |
|- 0 = 0 |
| 27 |
26
|
biantrur |
|- ( ( # ` ( W o. I ) ) = ( # ` I ) <-> ( 0 = 0 /\ ( # ` ( W o. I ) ) = ( # ` I ) ) ) |
| 28 |
25 27
|
bitr4di |
|- ( ( ph /\ 0 < ( # ` ( W o. I ) ) ) -> ( ( 0 ..^ ( # ` ( W o. I ) ) ) = ( 0 ..^ ( # ` I ) ) <-> ( # ` ( W o. I ) ) = ( # ` I ) ) ) |
| 29 |
|
simpr |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> 0 = ( # ` ( W o. I ) ) ) |
| 30 |
29
|
oveq2d |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( 0 ..^ 0 ) = ( 0 ..^ ( # ` ( W o. I ) ) ) ) |
| 31 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 32 |
30 31
|
eqtr3di |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( 0 ..^ ( # ` ( W o. I ) ) ) = (/) ) |
| 33 |
32
|
eqeq1d |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( ( 0 ..^ ( # ` ( W o. I ) ) ) = ( 0 ..^ ( # ` I ) ) <-> (/) = ( 0 ..^ ( # ` I ) ) ) ) |
| 34 |
|
eqcom |
|- ( (/) = ( 0 ..^ ( # ` I ) ) <-> ( 0 ..^ ( # ` I ) ) = (/) ) |
| 35 |
33 34
|
bitrdi |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( ( 0 ..^ ( # ` ( W o. I ) ) ) = ( 0 ..^ ( # ` I ) ) <-> ( 0 ..^ ( # ` I ) ) = (/) ) ) |
| 36 |
|
0zd |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> 0 e. ZZ ) |
| 37 |
|
lencl |
|- ( I e. Word ( 0 ..^ ( # ` W ) ) -> ( # ` I ) e. NN0 ) |
| 38 |
3 37
|
syl |
|- ( ph -> ( # ` I ) e. NN0 ) |
| 39 |
38
|
nn0zd |
|- ( ph -> ( # ` I ) e. ZZ ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( # ` I ) e. ZZ ) |
| 41 |
|
fzon |
|- ( ( 0 e. ZZ /\ ( # ` I ) e. ZZ ) -> ( ( # ` I ) <_ 0 <-> ( 0 ..^ ( # ` I ) ) = (/) ) ) |
| 42 |
36 40 41
|
syl2anc |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( ( # ` I ) <_ 0 <-> ( 0 ..^ ( # ` I ) ) = (/) ) ) |
| 43 |
|
nn0le0eq0 |
|- ( ( # ` I ) e. NN0 -> ( ( # ` I ) <_ 0 <-> ( # ` I ) = 0 ) ) |
| 44 |
43
|
biimpa |
|- ( ( ( # ` I ) e. NN0 /\ ( # ` I ) <_ 0 ) -> ( # ` I ) = 0 ) |
| 45 |
38 44
|
sylan |
|- ( ( ph /\ ( # ` I ) <_ 0 ) -> ( # ` I ) = 0 ) |
| 46 |
45
|
adantlr |
|- ( ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) /\ ( # ` I ) <_ 0 ) -> ( # ` I ) = 0 ) |
| 47 |
|
id |
|- ( ( # ` I ) = 0 -> ( # ` I ) = 0 ) |
| 48 |
|
0le0 |
|- 0 <_ 0 |
| 49 |
47 48
|
eqbrtrdi |
|- ( ( # ` I ) = 0 -> ( # ` I ) <_ 0 ) |
| 50 |
49
|
adantl |
|- ( ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) /\ ( # ` I ) = 0 ) -> ( # ` I ) <_ 0 ) |
| 51 |
46 50
|
impbida |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( ( # ` I ) <_ 0 <-> ( # ` I ) = 0 ) ) |
| 52 |
|
eqcom |
|- ( ( # ` I ) = 0 <-> 0 = ( # ` I ) ) |
| 53 |
52
|
a1i |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( ( # ` I ) = 0 <-> 0 = ( # ` I ) ) ) |
| 54 |
29
|
eqeq1d |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( 0 = ( # ` I ) <-> ( # ` ( W o. I ) ) = ( # ` I ) ) ) |
| 55 |
51 53 54
|
3bitrd |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( ( # ` I ) <_ 0 <-> ( # ` ( W o. I ) ) = ( # ` I ) ) ) |
| 56 |
35 42 55
|
3bitr2d |
|- ( ( ph /\ 0 = ( # ` ( W o. I ) ) ) -> ( ( 0 ..^ ( # ` ( W o. I ) ) ) = ( 0 ..^ ( # ` I ) ) <-> ( # ` ( W o. I ) ) = ( # ` I ) ) ) |
| 57 |
21
|
nn0ge0d |
|- ( ph -> 0 <_ ( # ` ( W o. I ) ) ) |
| 58 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 59 |
21
|
nn0red |
|- ( ph -> ( # ` ( W o. I ) ) e. RR ) |
| 60 |
58 59
|
leloed |
|- ( ph -> ( 0 <_ ( # ` ( W o. I ) ) <-> ( 0 < ( # ` ( W o. I ) ) \/ 0 = ( # ` ( W o. I ) ) ) ) ) |
| 61 |
57 60
|
mpbid |
|- ( ph -> ( 0 < ( # ` ( W o. I ) ) \/ 0 = ( # ` ( W o. I ) ) ) ) |
| 62 |
28 56 61
|
mpjaodan |
|- ( ph -> ( ( 0 ..^ ( # ` ( W o. I ) ) ) = ( 0 ..^ ( # ` I ) ) <-> ( # ` ( W o. I ) ) = ( # ` I ) ) ) |
| 63 |
18 62
|
mpbid |
|- ( ph -> ( # ` ( W o. I ) ) = ( # ` I ) ) |