| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnsubseq.1 |
|- ( ph -> W e. ( .< Chain A ) ) |
| 2 |
|
chnsubseq.2 |
|- ( ph -> I e. ( < Chain ( 0 ..^ ( # ` W ) ) ) ) |
| 3 |
2
|
chnwrd |
|- ( ph -> I e. Word ( 0 ..^ ( # ` W ) ) ) |
| 4 |
|
lencl |
|- ( I e. Word ( 0 ..^ ( # ` W ) ) -> ( # ` I ) e. NN0 ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( # ` I ) e. NN0 ) |
| 6 |
|
dfclel |
|- ( ( # ` I ) e. NN0 <-> E. x ( x = ( # ` I ) /\ x e. NN0 ) ) |
| 7 |
5 6
|
sylib |
|- ( ph -> E. x ( x = ( # ` I ) /\ x e. NN0 ) ) |
| 8 |
|
exancom |
|- ( E. x ( x = ( # ` I ) /\ x e. NN0 ) <-> E. x ( x e. NN0 /\ x = ( # ` I ) ) ) |
| 9 |
7 8
|
sylib |
|- ( ph -> E. x ( x e. NN0 /\ x = ( # ` I ) ) ) |
| 10 |
|
df-rex |
|- ( E. x e. NN0 x = ( # ` I ) <-> E. x ( x e. NN0 /\ x = ( # ` I ) ) ) |
| 11 |
9 10
|
sylibr |
|- ( ph -> E. x e. NN0 x = ( # ` I ) ) |
| 12 |
1
|
adantr |
|- ( ( ph /\ x = ( # ` I ) ) -> W e. ( .< Chain A ) ) |
| 13 |
12
|
chnwrd |
|- ( ( ph /\ x = ( # ` I ) ) -> W e. Word A ) |
| 14 |
|
wrdf |
|- ( W e. Word A -> W : ( 0 ..^ ( # ` W ) ) --> A ) |
| 15 |
13 14
|
syl |
|- ( ( ph /\ x = ( # ` I ) ) -> W : ( 0 ..^ ( # ` W ) ) --> A ) |
| 16 |
3
|
adantr |
|- ( ( ph /\ x = ( # ` I ) ) -> I e. Word ( 0 ..^ ( # ` W ) ) ) |
| 17 |
|
wrdf |
|- ( I e. Word ( 0 ..^ ( # ` W ) ) -> I : ( 0 ..^ ( # ` I ) ) --> ( 0 ..^ ( # ` W ) ) ) |
| 18 |
16 17
|
syl |
|- ( ( ph /\ x = ( # ` I ) ) -> I : ( 0 ..^ ( # ` I ) ) --> ( 0 ..^ ( # ` W ) ) ) |
| 19 |
15 18
|
fcod |
|- ( ( ph /\ x = ( # ` I ) ) -> ( W o. I ) : ( 0 ..^ ( # ` I ) ) --> A ) |
| 20 |
|
simpr |
|- ( ( ph /\ x = ( # ` I ) ) -> x = ( # ` I ) ) |
| 21 |
20
|
oveq2d |
|- ( ( ph /\ x = ( # ` I ) ) -> ( 0 ..^ x ) = ( 0 ..^ ( # ` I ) ) ) |
| 22 |
21
|
feq2d |
|- ( ( ph /\ x = ( # ` I ) ) -> ( ( W o. I ) : ( 0 ..^ x ) --> A <-> ( W o. I ) : ( 0 ..^ ( # ` I ) ) --> A ) ) |
| 23 |
19 22
|
mpbird |
|- ( ( ph /\ x = ( # ` I ) ) -> ( W o. I ) : ( 0 ..^ x ) --> A ) |
| 24 |
23
|
ex |
|- ( ph -> ( x = ( # ` I ) -> ( W o. I ) : ( 0 ..^ x ) --> A ) ) |
| 25 |
24
|
a1d |
|- ( ph -> ( x e. NN0 -> ( x = ( # ` I ) -> ( W o. I ) : ( 0 ..^ x ) --> A ) ) ) |
| 26 |
25
|
reximdvai |
|- ( ph -> ( E. x e. NN0 x = ( # ` I ) -> E. x e. NN0 ( W o. I ) : ( 0 ..^ x ) --> A ) ) |
| 27 |
11 26
|
mpd |
|- ( ph -> E. x e. NN0 ( W o. I ) : ( 0 ..^ x ) --> A ) |
| 28 |
|
iswrd |
|- ( ( W o. I ) e. Word A <-> E. x e. NN0 ( W o. I ) : ( 0 ..^ x ) --> A ) |
| 29 |
27 28
|
sylibr |
|- ( ph -> ( W o. I ) e. Word A ) |