| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnsubseq.1 |
⊢ ( 𝜑 → 𝑊 ∈ ( < Chain 𝐴 ) ) |
| 2 |
|
chnsubseq.2 |
⊢ ( 𝜑 → 𝐼 ∈ ( < Chain ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 3 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 4 |
|
lencl |
⊢ ( 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 6 |
|
dfclel |
⊢ ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 ↔ ∃ 𝑥 ( 𝑥 = ( ♯ ‘ 𝐼 ) ∧ 𝑥 ∈ ℕ0 ) ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝑥 = ( ♯ ‘ 𝐼 ) ∧ 𝑥 ∈ ℕ0 ) ) |
| 8 |
|
exancom |
⊢ ( ∃ 𝑥 ( 𝑥 = ( ♯ ‘ 𝐼 ) ∧ 𝑥 ∈ ℕ0 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℕ0 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) ) |
| 9 |
7 8
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝑥 ∈ ℕ0 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) ) |
| 10 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ℕ0 𝑥 = ( ♯ ‘ 𝐼 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℕ0 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) ) |
| 11 |
9 10
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℕ0 𝑥 = ( ♯ ‘ 𝐼 ) ) |
| 12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → 𝑊 ∈ ( < Chain 𝐴 ) ) |
| 13 |
12
|
chnwrd |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → 𝑊 ∈ Word 𝐴 ) |
| 14 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 17 |
|
wrdf |
⊢ ( 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 19 |
15 18
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → ( 𝑊 ∘ 𝐼 ) : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ 𝐴 ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → 𝑥 = ( ♯ ‘ 𝐼 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → ( 0 ..^ 𝑥 ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 22 |
21
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → ( ( 𝑊 ∘ 𝐼 ) : ( 0 ..^ 𝑥 ) ⟶ 𝐴 ↔ ( 𝑊 ∘ 𝐼 ) : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ 𝐴 ) ) |
| 23 |
19 22
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ♯ ‘ 𝐼 ) ) → ( 𝑊 ∘ 𝐼 ) : ( 0 ..^ 𝑥 ) ⟶ 𝐴 ) |
| 24 |
23
|
ex |
⊢ ( 𝜑 → ( 𝑥 = ( ♯ ‘ 𝐼 ) → ( 𝑊 ∘ 𝐼 ) : ( 0 ..^ 𝑥 ) ⟶ 𝐴 ) ) |
| 25 |
24
|
a1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℕ0 → ( 𝑥 = ( ♯ ‘ 𝐼 ) → ( 𝑊 ∘ 𝐼 ) : ( 0 ..^ 𝑥 ) ⟶ 𝐴 ) ) ) |
| 26 |
25
|
reximdvai |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℕ0 𝑥 = ( ♯ ‘ 𝐼 ) → ∃ 𝑥 ∈ ℕ0 ( 𝑊 ∘ 𝐼 ) : ( 0 ..^ 𝑥 ) ⟶ 𝐴 ) ) |
| 27 |
11 26
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℕ0 ( 𝑊 ∘ 𝐼 ) : ( 0 ..^ 𝑥 ) ⟶ 𝐴 ) |
| 28 |
|
iswrd |
⊢ ( ( 𝑊 ∘ 𝐼 ) ∈ Word 𝐴 ↔ ∃ 𝑥 ∈ ℕ0 ( 𝑊 ∘ 𝐼 ) : ( 0 ..^ 𝑥 ) ⟶ 𝐴 ) |
| 29 |
27 28
|
sylibr |
⊢ ( 𝜑 → ( 𝑊 ∘ 𝐼 ) ∈ Word 𝐴 ) |