Metamath Proof Explorer


Theorem chnsubseqword

Description: A subsequence of a chain is a word. (Contributed by Ender Ting, 22-Jan-2026)

Ref Expression
Hypotheses chnsubseq.1 φ W Chain A < ˙
chnsubseq.2 φ I Chain 0 ..^ W <
Assertion chnsubseqword φ W I Word A

Proof

Step Hyp Ref Expression
1 chnsubseq.1 φ W Chain A < ˙
2 chnsubseq.2 φ I Chain 0 ..^ W <
3 2 chnwrd φ I Word 0 ..^ W
4 lencl I Word 0 ..^ W I 0
5 3 4 syl φ I 0
6 dfclel I 0 x x = I x 0
7 5 6 sylib φ x x = I x 0
8 exancom x x = I x 0 x x 0 x = I
9 7 8 sylib φ x x 0 x = I
10 df-rex x 0 x = I x x 0 x = I
11 9 10 sylibr φ x 0 x = I
12 1 adantr φ x = I W Chain A < ˙
13 12 chnwrd φ x = I W Word A
14 wrdf W Word A W : 0 ..^ W A
15 13 14 syl φ x = I W : 0 ..^ W A
16 3 adantr φ x = I I Word 0 ..^ W
17 wrdf I Word 0 ..^ W I : 0 ..^ I 0 ..^ W
18 16 17 syl φ x = I I : 0 ..^ I 0 ..^ W
19 15 18 fcod φ x = I W I : 0 ..^ I A
20 simpr φ x = I x = I
21 20 oveq2d φ x = I 0 ..^ x = 0 ..^ I
22 21 feq2d φ x = I W I : 0 ..^ x A W I : 0 ..^ I A
23 19 22 mpbird φ x = I W I : 0 ..^ x A
24 23 ex φ x = I W I : 0 ..^ x A
25 24 a1d φ x 0 x = I W I : 0 ..^ x A
26 25 reximdvai φ x 0 x = I x 0 W I : 0 ..^ x A
27 11 26 mpd φ x 0 W I : 0 ..^ x A
28 iswrd W I Word A x 0 W I : 0 ..^ x A
29 27 28 sylibr φ W I Word A